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This paper shows how to find approximate strong Markov equilibria in a setting
of infinite horizon incomplete markets by solving a finite dimensional fixed point
problem. These equilibria have the interpretation of a slightly imperfect and slightly
random market mechanism. Journal of Economic Literature Classification Numbers:
C62, DS2, D92, G10.  © 1993 Academic Press, Inc.

1. INTRODUCTION

A strong Markov equilibrium describes an economic system with an
indefinite past and indefinite future. We need not imagine that this equi-
librium truly has existed forever in the past, that it will do so in the future,
nor yet that the agents believe that it has or will. Rather, if the process has
gone for a long time, and is stationary and ergodic, traders will have drawn
accurate inferences about it. Since the process is expected to continue for
a long time, traders will use these inferred relations in making forecasts. In
other words, in a strong Markov equilibrium rational expectations make
sense. Note, however, that there is nothing persuasive about the require-
ment that traders have exact knowledge of the relations involved.

In rational expectation models where equilibria solve a social welfare
problem, tools from dynamic optimization theory can be applied to prove
a stationary ergodic equilibrium exists: see Marimon [7], for example.
Indeed, strong Markov equilibria are the basis of modern recursive analysis
as exposited, for example, in Stokey er al. [9]. With overlapping genera-
tions, or market imperfections it is not currently known whether strong
Markov equilibria exist under reasonably general conditions, although they
are known to exist for certain special cases (see Levine [6]). In a different
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context, Spear [8] has shown that they generically fail to exist if we require
the invariant distribution to have finite support. It is known from the work
of Duffie et al. [2], that a weaker form of stationary equilibria with some
ergodic properties exist, and Kehoe and Levine [4] give a method of com-
puting them. But the high dimensionality of the state space, computational
and analytic intractability, and the need to include economically irrelevant
variables make these equilibria less appealing than strong Markov equi-
libria.

On the other hand, strong Markov equilibrium supposes that traders
have exact knowledge of the causal links between initial conditions and
equilibrium outcomes. It is more sensible to assume that their knowledge
of this causal link is fuzzy. There are two modeling approaches: to assume
that the world is exact, but knowledge fuzzy, or to assume that knowledge
is fuzzy because the world is fuzzy. We take the latter approach, because
it leads to a tighter model.

To be concrete, we focus on an economy where intertemporal and
interstate trade may be carried out only by trading ownership in a finite
collection of long-lived assets which may not be held short. In particular,
markets are potentially incomplete. This may be interpreted as a com-
modity money variant of Bewley [1] and Townsend [10]. Indeed, if the
assets represent physically transportable goods that yield a flow of services,
this type of equilibrium follows immediately from the Townsend turnpike
spatial location model. The incomplete market/no short sales model has
also been studied by Duffie et al. [2], Levine [S5, 6], and others.

Since we cannot prove the existence of a strong Markov equilibrium in
this setting, we weaken the notion of equilibrium. Ordinarily, we describe
the market mechanism as choosing a price, and assume that individuals
can buy or sell as much as they like at that price. Of course, if the market
chooses the wrong price the resulting allocation will not be socially feasible.
Consequently, it is better to think of the market as choosing both a price
and allocation so that no trader is frustrated by the allocation he receives.
Recognizing that the “market” is a complex and nonmodeled process, and
that competitive equilibrium is merely an idealization, we relax this to
require only that the market chooses a price and allocation so that no
trader is very frustrated by the allocation he receives. In addition, we want
to allow market outcomes to be imperfectly predictable, due to small
nonmodeled factors. So we assume that the market chooses a price and a
random allocation in such a way that traders are not very frustrated in
expected value. This does allow the possibility that the market selects
allocations that lead to a very high degree of frustration, but it must do so
with very low probability. As a result there is little incentive to try to
improve .the market mechanism: the market gets things almost right most
of the time. This theory is consistent with the existence of a small amount
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of monopoly power, asymmetric information, imperfect computation, and
other frictions.

We refer to such a mechanism as a trembling invisible hand equilibrium:
the invisible hand of the market is slightly imperfect in simultaneously
satisfying all agents. We are then able to give a concrete model of such
equilibria as exact equilibria of an economy with small random income
transfers. These equilibria can be calculated by solving a finite fixed point
problem, much as in the nonstochastic analysis of steady states, and are an
approximate stochastic steady state.

2. THE MODEL

We study an intertemporal exchange economy in which there are many
assets, each representing ownership in a stream of consumption goods.
Debts cannot be collected, so borrowing and lending can only take place
through the sale and purchase of assets.

At each time t=.., —1,0,1,.., 7, is an index of current and future
technological possibilities for the economy. The exogenous state variable 7,
lies in a finite set #,=1, 2, ..., I, and forms a Markov chain with transition
chain probabilities denoted n(n,, |n,). These are assumed to be strictly
positive:

7t(’1t+1|77;)>0. (A.1)
At the beginning of period ¢, the current and past values 7,, 1,1, B, 25 s
are assumed to be commonly known and the future values 7,4, 7,42,
are unknown.

There are finitely many traders a=1, 2, ..., A. There are C consumption
goods, and at time ¢ trader a consumes xj€ RS. Endowments are a
function of the exogenous state, denoted x“(n,) € RS . We assume

x%(n,)>0 (A.2)

At any time ¢, trader a has utility depending on current and future
consumption. This has the intertemporally separable form

vi=E,| 3 5wt 7] 1)

T=1
where 0<6<1 is a fixed common subjective discount factor, E, is the
expectation conditional on information dated ¢ and earlier, and the period
utility function u“ satisfies:

u(x%,n,) is bounded, and as a function of x; on RS, it
is strictly increasing, concave, and smooth. The gradient
Du%(x%,n,) is bounded even on the boundary of the
consumption set. (A.3)
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The assumption that Du“(x?,n,) is bounded on the boundary of the
consumption set is not standard (although not unreasonable). It is used to
guarantee, that marginal utility is bounded across all equilibria. In this
setting of no short sales, it is a technical artifice in the following sense: since
endowments are strictly positive and no borrowing is possible, consump-
tion is uniformly bounded away from zero in every equilibrium and so is
marginal utility, even if it becomes infinite on the zero consumption
boundary. However, making this argument formal adds a significant
amount of notation without adding insight. Those interested in the details
of this type of argument will find it carefully laid out in Duffie ez al. [2].
There are N assets. At time 7, the beginning of period asset holdings of
a type a trader are denoted by y“e RY . We will also use z’s for the end of
period holdings, and omit the superscript a as y,, for the vector of all
traders’ asset holdings. Notice that asset holdings must be nonnegative, to
reflect the fact that debts cannot be collected. Each asset j held at the end
of period ¢ — 1 yields a consumption return of R’(n,) € R at the beginning
of period t. Consistent with limited liability, returns must be nonnegative:

Ri(n)=(#)0. (A4)

Letting R(n,) denote the matrix with columns R’(7,), a trader who holds
y? at the beginning of period ¢ receives goods R(n,) y¢ then.

There is a fixed positive stock of assets ye R , . Social feasibility there-
fore requires that

A
Y yi=7 (E.1)
a=1

in each and every period. The total available consumption consists of
aggregate individual endowments, X(n,)=>7_, ¥“(n,) which, due to the
impossibility of debt collection, can be traded only on spot markets, plus
the consumption for which ownership is transferable through asset trading
R(n,) 7. Social feasibility of consumption, then, requires that

Z “=%(n,)+R(n,) 7. (E.2)

Let p, denote the prices of consumption goods, and g, of assets. By the
monotonicity of preferences, and nonnegativity of asset returns, we may
assume prices are nonnegative. A trader of type a who held a portfolio of
y¢ at the beginning of period 1, faces a budget constraint of

pAx?=x%n,)—R(n)yH)+qy;.,—y7)<0. (E.3)
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Because this is homogeneous in prices, we are free to normalize prices so
that the vector (p,, ¢,) is on the unit simplex.

A strong Markov plan for this economy consists of functions p(y,, n,),
q(y., 1), x(y,,n,), and z(y,, n,) together with a stationary ergodic process
Pur Gi» Xi» Vi» 1, that almost surely satisfies p,=p(y., 1), 4:=4(y:, 1),
X, = x(yt’ 11,), Y+t = Z(yt’ '1:), and

PfOb(m+ 1“7:’ Ne_t1s o Vs Ve—1s ) =7t("t+ 1 I r’t)'

We also consider the weaker notion of a random Markov plan. Here
we replace z(y,,n,) with conditional probability  distributions
T(YirtsMert] Ve Meds and rather than requiring y, . =2z(y,, n.), we require
that .

PrOb(yt+1’ ’71+1|’1t’ Ne1s s Ver Vet --°)=7t(yt+1’ ’7r+1|yn ’7:)-

A strong Markov Plan is a strong Markov equilibrium if the social
feasibility conditions (E.1) and (E.2) are almost surely satisfied by x, and
y,. Moreover, it must be true that for each time t and agent a, and almost
all initial portfolios y., the plan x*(y,n.), 2%y, n,) maximizes the
objective function (2.1) subject to the budget constraints (E.3) for t>1.

3. TREMBLING INVISIBLE HAND EQUILIBRIUM

Our goal is to look for equilibria in which there is not an exact link
between initial conditions and outcomes. To do this we introduce an
imperfect market mechanism in which portfolios at the beginning of a
period are a stochastic function of portfolios at the end of the previous
period. ,

Informally, an & trembling invisible hand equilibrium is a random Markov
plan such that the social feasibility conditions (E.1) and (E.2) are almost
surely satisfied by x, and y,. Moreover, it must be true that for each 7 and
agent g, and almost all initial portfolios y., the utility in (2.1) from the
allocation x°(y,, n,) cannot be improved upon by more than ¢ by any plan
satisfying the budget constraints (E.3) for 1>1.

Notice that in the definition of a random Markov plan, the randomness
in the market allocation at ¢ is assumed to lie entirely in the portfolio y, .,
held at the beginning of ¢+ 1. This creates fuzziness in the causal link
between time ¢ and ¢+ 1: at ¢ traders cannot be exactly certain what the
relationship between 7, , and p,,, will be.

To give a precise mathematical definition of an e-trembling invisible
hand equilibrium, fix a random Markov plan. Let

v (p,, I7, ) = maxu’(x7, n,) subject to p,x{<Ii+p,X°(n)).  (31)
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Also define
r,.=p,R(n,)+4q, (3.2)

to be the total return on each asset.

Now consider a price taking agent who deviates from the random
Markov plan by choosing the portfolio process y;. The unique dynamic
programming value function satisfies

Vi(ye, 77,10

= max 0(p, J4, 1)+ [ VAiens Frars Mee) A1 ens Mear| Voo 1)

a
19, 9¢4)

SUbjeCt to If=r,)7§‘—q,)7f+1> —p,fa(r],), (33)

This represents the most utility an agent starting with a yi can achieve if
allowed to trade freely. (Note that y, appears in the value function because
it is the state variable for the Markov process followed by prices, and so
forth.) Let

S 5w (xt 0 | m] (34)

T=1

Wy, n,)=E [

be the realization of the conditionally expected present value at time ¢
according to the proposed equilibrium. Then to be an e-trembling invisible
hand equilibrium we require that for all agents a

[, yen)=weron)ldnyun)<e, - (E4)

where 7n(y,,n,) are the stationary probabilities. In other words, the loss
relative to the optimum, weighted by the probability with which events
occur, should not exceed &. This allows for the possibility that there 1s an
improbable value of (y,, #,) for which the loss is very large.

Our goal in this paper is to prove:

THEOREM 3.1. Under (A.1) to (A.4), e-trembling invisible hand equilibria
exist for all positive values of .

Préof. Follows from Theorems 3.2 and 3.3 below. ||

We will show that not only do such equilibria exist, but that they exist
with finite support: that is, the measure n(y,, 1, 7,11 ¥,,n,) puts all its
weight on a finite set of portfolios y, ., fixed independent of y, and #,.
Consequently, we may let S denote the finite set of pairs (y,, n,) that have
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positive weight. We may then write p,, ¢,, X, n,, in place of p(y,,n,),
qyon), x(yon) and m(y., i, Meei|yeon) where s=(y,n,) and
6=1(Y,+1>M:+1). Equivalently, we may define a finite Markov plan by
specifying a finite set S, and values y,, n, showing how initial portfolio state
pairs depend on s, plus values p,, g,. x,, and m,,. The requirement of
consistency with n(n,, ( |#,) is that if s(n) are all the states s with n,=n,
then Y, c ) s = (11 1,). We also require that the finite Markov chain S,
n,, have a single ergodic class and let m, denote the unique stationary
probabilities. If 5,=s, we put p,=p,, ¢,=¢,, X,=X,, y,= ;, and 7, =1,.
In this way, each finite Markov plan gives rise to a random Markov plan.

We now consider a fictitious finite economy defined on S. Our goal will
be to show that equilibria of this economy give rise to finite Markov plans
that are e-trembling invisible hand equilibria. First, fix a finite set S, and
associate each point se S with an exogenous state 7,.

In the fictitious economy, each state se S is associated with a market:
agent a consumes x°, trades at p,, and is endowed with x°(r,). Associated
with each market is a strictly positive probability weight n,; agent a’s
objective is

Y mut(x?,n,) (3.5)

ses

that is, he seeks to maximize the stationary value of his utility.

Our goal is to define budget constraints that link the markets through
portfolio holdings in such a way that an agent has the same incentive for
holding securities as in the dynamic economy. To do this, we associate with
each state and agent a a portfolio z¢ that is to be interpreted as a target
portfolio he “should hold” at the end of market 5. These portfolios should
be socially feasible, so that 3"#_, z?= j. We also associate with each pair
of states a probability u,, with ¥ . sp,=1. This is interpreted as the
probability at o of having previously been at s. Let g, denote the price of
purchasing securities at s, 2 agent a’s chosen end of period securities
holdings, and define r,=p,R,(n,)+4q,. Then in market s, agent a is
constrained by nonnegative consumption and securities holdings, and the

budget constraint

po(x?—%(n,)) + g2 —r; Y, Hael(1—0—7)z5+02;+7v7/4]1<0, (36

geS

where 0 <y < 1 — 8. In other words, at s, agent &’s initial portfolio of assets
is a weighted average of his holdings at the end of different states o, each
of which in turn is a weighted average of what his holdings “should” be,
and what he actually chose to hold, with the weight on what he chose
equal to his own discount factor. In addition, to guarantee positive
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endowments, each agent is given a small fraction y/4 of available assets.
This is a technical artifice that simplifies proofs.

An equilibrium of the fictitious econmy comprises prices p;, q,, and plans
x, and Z, that are socially feasible and individually optimal. In addition, we
require that the target portfolio z, satisfies

28 =32, (3.7)

so that each agent chooses to hold the portfolio he “should” hold.
In equilibrium, by (3.7), each agent’s beginning of period asset portfolio
at s is
Yo=(1=9) T oozl +77/A. (3.8)

Moreover, we may define n,, by

n,, = ot (39)
T

s

This implies that the u,, are the stationary probabilities of having last
period been at s, given the system is now at o.

Each equilibrium of the fictitious economy gives rise, therefore, to a finite
Markov plan y,, 4, ps, 4;, X,, and 7, provided that 3" _ ., 7, =n(n|n,).
Rewriting the latter condition in terms of the u,, we say the fictitious
economy is consistent if 3", . ) Tobse = 7,1 |1n,). Since the Markov chain
n,, has a unique ergodic class if and only if the time reversed Markov
chain yu,, does, we call the fictitious economy ergodic in the latter case. Our
conclusion is that an equilibrium of a consistent ergodic fictitious economy
gives rise to a finite Markov plan.

We may now compute the difference between the value of the fixed
portfolio from (3.8), y¢, held at the beginning of s in the fictitious economy,
and the actual portfolio held at the end of ¢ in the corresponding finite
Markov plan, z¢. Remember that in a random Markov plan, these are not

required to be equal. Define

Ai=r(yi—z3) (3.10)
Define also net asset income

Ji=royi—q.z;. (3.11)

Finally, let the Lagrange multiplier associated with the constraint (3.6) in
state s be 7,4, and compute the marginal utility of zero income as

y Jie _p g8

;"? - {¢S a o jl ps;ia(r“) (312)
DIU (psa —PsX (r,.s)) J;- > —PpsX (":)

Our main theorem, Theorem 3.1, follows from the following two results.
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THEOREM 3.2. Under (A.1) to (A.4) a finite Markov plan arising as an
equilibrium of a consistent ergodic fictitious economy is an e-trembling
invisible hand equilibrium with

g=(1-6)"'{ max Af,}{maxZnsA;‘}.

{a’s-a’|#m>0} s

Proof. Follows from Theorems 4.1 and 4.2. ||

Theorem 3.1 then follows from a theorem on fictitious economies.

TueorReM 3.3. Under (A.1) to (A.4), there exists a B> 0 such that for all
¢>0 there is a set S and a consistent ergodic equilibrium of a fictitious

economy on S satisfying

Y Ain,<B (3.13)
seS
(4%, =) |r(y2—z2)|<e  whenever p,,>0. (3.14)

Proof. See Section 5. [}

4. TRANSFER PAYMENT EQUILIBRIA

In this section we prove Theorem 3.2, that each equilibrium of a consis-
tent ergodic fictitious economy gives rise to a finite Markov plan that is an
¢-trembling invisible hand equilibrium. Where previously we examined
approximate equilibria of the exact model, we now turn to exact equilibria
of an approximate model. The approximation involves modifying budget
constraints to include small random transfer payments. These transfer
payment equilibria do not have as good an economic interpretation as
¢-trembling invisible hand equilibria. On the other hand, they are easier to
work with, and we show that if the transfer payments are small, so is the
¢ for the corresponding e-trembling invisible hand equilibrium. The advan-
tage of transfer payment equilibria is that they are the same as equilibria
of fictitious economies. This gives us a method of calculating e-trembling
invisible hand equilibria.

For given prices p,, and state #,, suppose that A? is any scalar satisfying

iszlva(pta'_ptja(nt)a ’11), . (41)
and for IV < — p,x%(n,) define

(P 17, 45 AT = 0Py —poX(M,), 1)+ A{UTT 4+ p. X)) (42)
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In other words, we use 4“ to extend the indirect period utility functions to
negative levels of total income. Moreover, (4.1) ensures that v“ is concave
in income. The reason for extending v® to negative income levels is that
random income transfers will generally cause involuntary bankruptcy in
some states.

An ¢-transfer payment equilibrium is a finite Markov plan plus multipliers
/4, and income transfers 4,,, that satisfy certain properties. We interpret 4%
to be the additional income transferred to a in state ¢ when the previous
state was s. We require

145, <é& (4.3)

that is, the income transfers should not exceed &. Second, for s=(y,, 1),
6=(y1+1’ ’71+1) define

Al+l=Asa; /"t=/'s'

Then there must exist a sequence of ¢ that solve the optimization problem

Vs '7:]

+47, T>1
+0, T=1

o

max E l: Z 51_112‘1(‘01, J$9 Nes )'g)

T=1

subject to J=r, §°—q. 5, { (44)

almost surely for each r. This is the same optimization problem as (3.3),
used in defining an e-trembling invisible hand equilibrium, except that there
are random income transfers 4°. We also require that the optimal 77 and
the corresponding J¢ must almost surely satisfy

ry;—57) =47, (4.5)
Jiz —piX(n.) (4.6)

although these conditions are not part of the constraints on the optimiza-
tion problem (4.4). In other words, the difference between the optimal and
equilibrium income exactly equals the income transfer, and the optimal
total income is nonnegative. If we substitute (4.5) into the definition of J¢,
we find J®=r, y?—q. 7%, ,, so that if the optimal plan has been followed
through 1, the initial condition depends on ¢ only through s, (that is, y,),
and is independent of s,_,,S,_,,... This means that an optimum
depending only on s exists. In particular, at such an optimum J. =/J;
depending only on s.

To understand this definition, suppose that S, x,, p,, ¢, ¥, T, 4, and
4., form a transfer payment equilibrium. It is clear that j¢= y? must be
optimal in (4.4) since by (4.5) it yields the same income as the optimal
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plan. Moreover, from (4.6), and the fact that J; depends only on s,, it
follows that there is a unique x? associated with each state such that
u’(x?, n,) =v*(p,, J%, n,, A?). Consequently, the joint savings, consumption
plan x,, y, is an optimal solution to maximizing (3.4) subject to budget
constraints (E.3). In other words together with the uniquely defined con-
sumption plans, a transfer payment equilibrium is a O-trembling invisible
hand equilibrium. For our purposes, we need the following extension of
this result:

THEOREM 4.1. Under (A.1) to (A.4), every c-transfer payment equi-
librium, together with the unique associated consumption plan, is an
¢'-trembling invisible hand equilibrium with

¢ =¢(1—5)""max Y m Al
4 ses
Remark. This implies the previous result, since in equilibrium it is clear
that A% must be finite. What this theorem shows is that to prove
¢-trembling invisible hand equilibria exist for all positive ¢, we must show
that there is a sequence of ¢'-transfer payment equilibria with ¢’ —0 and
> ses A% bounded above.

Proof. What we must show is that the random income transfers do not
hurt any agent too much. The realized utility in (3.4) is found by solving
(4.4); the maximal utility in (3.3) by solving

Yo '7:]

subject to  If=r,yi—q.Ji 1= —p.X(n:), =t (47)

e s}

max E |: Y 8 TP, IS Ny AL

T=1

Suppose 7¢ is feasible in (4.7), and let I? be the corresponding income.
Since (4.4) does not require J> —p.x%(n.), the plan 7 is also feasible
there and yields the utility

E [ Y 6 v(p., IZ+ 42, 1., A7)

T=1

Yo n,]. (48)

Moreover, by (4.1) v*(p,, ..., 11, A%) is Lipshitz in I* with Lipshitz constant
A%. By (4.3), this implies that (4.7) exceeds (4.8) by at most

¢E, T 6710 (4.9)

T=1

Taking unconditional expectations with respect to the stationary
probabilities then yields the desired result. |
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A key aspect of an equilibrium with transfer payments is that in equi-
librium the transfer payments make the value of an agents endowment
depend only on the current state. We can use this observation to construct
a fictitous finite economy, such that the first order conditions for an
individual optimum are the same as those in an equilibrium with transfer
payments. This shows that the finite Markov plan arising from such a
fictitious economy may be transformed into an equilibrium with transfer
payments by simply defining the transfer payments in such a way as to give
each agent the same income he has in the fictitious equilibrium.

Consider in a fictitious economy the first order conditions for an agent
maximizing (3.5) subject to (3.6), and recall that the Lagrange multiplier
associated with the constraint (3.6) in state s is n,¢7. We get (with
complementary slackness)

Du’(x{, 1) < ¢ ps
(4.10)
929,20 ) (Mols/ms) G575
ceS
In terms of the extended indirect utility function, net asset income J¢, and
the multipliers 4%, this may be written

D, v%(pys J4 Mgy 498,28 Y, (Mohes/Ts) D" (Pos IG5 Nas 25)Ta- (4.11)

ceS

This can be contrasted with the first order condition for a transfer payment
equilibrium. Note that in such an equilibrium J¢ depends only on s and we
may write

Dlva(ps, J?, s ':'g)qs>6 Z Mo Dlva(pa’ J:;, Hos )":)ra' (412)

ceS

However, by (3.9), defining n,,, (4.11) and (4.12) are the same, and we can
now prove:

THEOREM 4.2. Under (A.1) to (A.4), every equilibrium of a consistent
ergodic fictitious economy gives rise to a finite Markov plan, that together
with the multipliers (3.12) and transfers (3.10) is a transfer payment
equilibrium.

Proof. By the discussion above, we need only show that the first order
condition (4.12) is sufficient for an optimum in (4.4). This follows from the
concavity and boundedness of u“ together with the fact that the proposed
optimal plan is stationary, and consequently yields finite utility. See
Weitzman [11], Bewley [1], or Levine [5]. | *
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5. EXiSTENCE OF TREMBLING INVISIBLE HAND EQUILIBRIUM

From the previous two sections, we have reduced the problem of the
existence of e-trembling invisible hand equilibria to showing the existence
of fictitious economy equilibria in which the transfers (3.10) are uniformly
small, and the multipliers from (3.12) are bounded in expected value. We
do this by associating the state space S with a grid in the space of feasible
portfolios, and refining the grid. Recall the statement of

THEOREM 3.3. Under (A.1) to (A.4), there exists a B> 0 such that for all
¢> 0, for each such ¢ there is a set S and a consistent ergodic equilibrium of
a fictitious economy on S satisfying

Y im,<B (5.1)
seS
lr(y2—z%)| <, whenever > 0. (5.2)

Proof. Fix a=¢[1+max, ., R(n,)]""/2 and y so that y=a/2]j|. Let
Y = R be the space of socially feasible portfolios, and, since this space is
a compact metric space, let Y* be a finite subset of Y such that every point
in Y is within « of a point in Y* Define S'= Y*x I For z,€ RY* repre-
senting an end of period portfolio, y* € Y* representing a beginning of the
following period portfolio, and » an integer, define

dn(yat I zs) = [Iya - zsl + a] "
The “probability of moving from z, to y*” is then defined as

d'(y*|z,)
Zye Y« dn(ylzs)

2"(y*|z,) =

Observe that #"(y*|z,)>0, X,., #"(y*|z,)=1, and #"(y*|z,) is con-
tinuous in z,. Moreover, if Y*(z,) are the set of points in Y™ closest to z,

im Y #"(y*|z)— L. (5.3)

n2X e ¥H(z)

Let s = (y%n,); 0= (y5n) If zeR*, we define nf(z) =
n(n,|n,) #*(y%|z). Then n"(z)>0and 3, _, 7},(z) =1, so for each z n{,(z)
defines a Markov process with strictly positive transition probabilities. It
follows that there is a unique positive stationary distribution n7(z) and a
unique reverse Markov process u’(z) satisfying (3.9). Moreover, since
#"(y|z,) is continuous in z,, 77 (z) is continuous in z, and it follows from
the theory of Markov chains that n7(z) and u},(z) are continuous in z.
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Lemma 5.1 shows that there exist p”, ¢, x7, Z;, and z{ such that p7, g%,
x", and 2" are equilibria of the fictitious economy defined by z7, u5.(z"),
and n”(z"). By construction, such an equilibrium is consistent and ergodic.
Moreover, by (5.3) and the fact that z{ is socially feasible, if we let
a"(s) = S’ be points ¢ = (y,, n,) With |y; —z{| <a,

im Y wn(z")- L (5.4)

R= X 5eal(s)

Now let n — co. Then there is a subsequence such that

n

n n sn n n = !
(pS’qS’xS’ZS’ usa’ ns)—'(P.s" qS’ xS’ ZS’ u'sa’ ns)

nz”:ﬂ'/n.’:a(zn) - nsa"

By Lemma 5.2 there is a subset S < S’ such that pg, g,, x;, and Z, restricted
to S are consistent ergodic equilibria of the fictitious economy defined
by z,, M., and m,=m,/Y, . 7, restricted to S. Moreover, by (5.4),
| y¢ — 2% < o whenever u,, >0. By (3.8), this implies for all s, &

|ye -zl <a+2y| 7| =2a

Since a =¢[ 1 +max, ., R(n,)]~"/2 and r,=q,+p,R(n,) with p,, g, on the
simplex, (5.2) follows.

Finally, we have to show (5.1) holds with B independent of ¢. Since in
equilibrium agent a’s consumption must be socially feasible, and utility is
monotone,

Y 0% Py 1y VY Mg A7) Smax w(X(n,) + R(n,) Jrn) = (55)

seS mel

Since v is Lipshitz with constant 4%, and v*(p,, —p,X(n,), 1., A{) =
u®(0, n,) = min, ., u*(0, n,)=u"

Z ns;"?(psia(r’s)_lprs??)gaa_ua' (56)

seS

Aggregating over agents yields

A

A
Y Y a,minAl[pX(n,)+r.y1< Y @ —ut. (5.7)

a=1 se§ a=1

Since x(n,), y are strictly positive, r,=¢,+ p,R(n,) with R(n,) strictly
positive and (p,, g,) on the unit simplex, it follows that if we define b to
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be the minimum of p,%(n,) +r, 7 over s and (p,, g,) on the unit simplex,
then »>0. From (5.7), we have

il

Lemma 5.3 then directly implies (5.1). §

A
Y m, min l;‘]s Y @ —ut -~ (58)
a a=1

seS

LEMMA S5.1. For fixed s, let p,,(-) and n-) be strictly positive con-
tinuous functions on RN4S, satisfying ¥, sn(z)=1and 3, 5 pue(2) =1, for
each z. Then there exist p,, q,, X,, %, and z,, such that p,, q,, x,, and Z;
are equilibria of the fictitious economy defined by z, p,,(z), and ny(z). |

Proof. This is a variant on standard finite dimensional general equi-
librium theory with the side constraints (3.7). The fact that the demand for
assets is a correspondence rather than a function complicates the argument
slightly.

Let PcR(E*™S be the space of prices such that each component
(p,, q,) is on the unit simplex. Let Z< R%*® be the space of socially
feasible portfolios. We can then define the individual demand set of (x“, Z%)
for (p, q) € P and initial z € Z to be the maximizers of (3.5) subject to (3.6),
and the additional constraint that x? and z¢ cannot exceed twice the social
total. Because endowments are strictly positive by (A.2) and y >0, the plan
(x°, %) =0 strictly satisfies all the budget constraints, implying that budget
constraints are lower hemi-continuous. Since u,, and =, are continuous, it
follows that demand is upper hemi-continuous (on P x Z), compact, and
convex valued. We let Z(p,q,z)e R"*S be the demand for assets.
Monotonicity of preferences, nonnegative returns (A.4), and the trimming
of individual demand imply that as the price of any good or asset goes to
zero, the demand for that good or asset equals twice the social total of that,
not the good or asset. Aggregate excess demand for goods, x(p, ¢, z), and
assets, {(p, g, z), is therefore also upper hemi-continuous, convex, and com-
pact valued, and if p,, =0, x.(p, ¢, 2)>0; if g;=0, {,(p,q,2)>0.

Consider the correspondence on P x Z defined by

d(p, g, 2)=(p+x(p, ¢ 2), ¢+ (P, 4, 2), Z(p, 4, 2))-

This is upper hemi-continuous, convex, and compact valued, but does not
map into P x Z. However, if ze Z and (p, q) is equal to the orthogonal
projection of (p + ¥, ¢+ {) onto P, then we will indeed have an equilibrium
of the type described in the lemma. This method is discussed in Kehoe [3].

There is a large compact convex set D > Px Z such that d<= D. Extend
d from P x Z to D by first projecting onto P x Z, then applying d. By the
Kaketani fixed point theorem, this map does have a fixed point. Let (p, q)
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be the projection of this fixed point on P. By the boundary conditions,
excess demand vanishes at such a point. In particular, {(p, g, 2)=0. This
implies ze Z. |

LEMMA 5.2. Suppose p", q7, X%, Z; are consistent ergodic equilibria of

s

the fictitious economy defined by z, u” , and 3, that

n n =z n n 5
(ps’ q';’ xs’ z:‘l’ #sa’ ns) - (ps’ qw xs, Z:, zs’ usa" ns)s

and that n"u" /n" — n,. Then there is a subset S’ = S such that pg, 4, X,
and %, restricted to S’ are consistent ergodic equilibrium of the economy
defined by z;, sy, and T;[2 55 Mo restricted to S'.

Proof. Consider the limit on S (not S'). Clearly (p;, g» X5 Zs5 Zss Msos )
satisfy individual budget constraints and social feasibility for each se S. We
further claim that x¢, ¢ are optimal for each a. If not, some X2, Z{ does
strictly better, and since xZ =0, 2§ =0 for all s strictly satisfies the budget
constraints, and we may assume X7, Z{ 18 strictly feasible (by averaging it
with zero). But then for large enough n we will still have %2, 22 strictly
feasible and strictly better than x", 2", a contradiction.

Next consider the states S, for which n,=0 and S, for which 7, >0.
From (3.9) and ¥, 7", = 1, it follows that since 1">0,3 cs Mol =15
This implies 3, . s Mo leo = N5 I SESp, 0 € S, , then yu,, =0. Consequently,
%2 39 satisfies the budget constraints (3.6) only if this is true for the

corresponding plan with (X{, Z{) = (X{, %) for seS,, (x£,2;)=0 for
seS,. Conversely, if X7,z satisfies the budget constraints for s€S,,
(%2,29)=0 for seS, satisfies all the budget constraints. Consequently
(Ds» Gs» Xs» Z5s Zss Psg» T5) 18 AN equilibrium on S . ~

Finally if S is an irreducible subclass of S,, u,,=0if s€S,/S and
oS, , implying the budget constraints are independent between different
irreducible subclasses. Since the objective is additively separable between S’
and S,/S’, this implies that (p,, 4, Xs, 3., 2 hegs Ms/Lses» Tg) 18 an
equilibrium. §

LEMMA 5.3. There is a constant i* depending only on u such that
A4[AL < A* in any ergodic equilibrium of any fictitious economy.

Proof. Define

¢*= max Dui(xf,n)/ min  Du(xg, n)
an.¥(n)> x>0 a.n2(n)=x¢=0

and fix a. Note that (A.3) ensures that 0 < ¢* < 0. We observe that it is
sufficient to prove that ¢¢/¢><g¢* and 1<A{/¢5 < ¢*, in which case
AL A = (¢*). The latter fact follows from (3.12) defining A¢ and the
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first order condition (4.10). Either J¢= —p.X“(n,) and no consumption
takes place, so Ai=¢7, or J9> —p,x%n,) in which case A2>¢% and
for some ¢, A°=p,D.u%0,n,) and ¢¢=p, D u(x?,n,) for some
0< x?< x%n). But then A{/9? < o*. :

We focus then on showing ¢?/¢° < ¢*. Observe from (4.10), that for all b

¢2 p,=Du’(x?, n,)
(5.9)
$2q,20 ), (R pq/m,) $or,

ceS

with complementary slackness. Moreover, since r,>0, we must have
q,>0, and we may define

B!, =0(m,p,s/ms) rl/ql. (5.10)

Define the set of states for which a is willing to save by

r=ls

and if se X, let j(s) be such a j. If s¢ X, a must be consuming at least his
endowment of some good i, so

for some j, ¢3qi=0 } (ﬂaﬂﬂ/ﬂs)cﬁiri}, (5.11)

ceS

¢ psc =D u(x{, )
¢f pSC = Dcub(x_?" r’s)

implying ¢7/¢; < ¢*.

Now set B,, =B/ for se X, and let B be the corresponding square
matrix with oeZ2. Similarly, define B_, for o¢S, and partition
#° = (4%, #° ;) in the corresponding way. Notice that By, B_; are non-
negative matrices with a strictly positive entry in each row.

Suppose first 2 # S. Then

¢i— = Bz¢az + B—z¢a—£
¢%= B4 +B_-¢° 5.

Moreover, by (3.9) 44> 0. Consequently (I — Bs)¢% >0, implying /— B
has dominant diagonal, and thus a nonnegative inverse. Consequently,

¢2=(I—Bs)"'B_;¢° ¢
52(I—-B;)"'B_;¢° ;.

We already showed ¢° ;. < ¢*¢° , so

$3<¢*(I—Bs)"'B_;¢" ;< $*¢%.
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Finally, suppose that X =S. Then, since S is an irreducible class, B is
indecomposable. Since ¢“= B¢“, B has Froebinius root 1. Consequently,
there is a strictly positive vector A such that #'=h’B. Then if ¢° # Bg®,
since ¢, > B¢, are nonnegative vectors, h'¢, > h'B¢, implying h'¢®>h'¢’ a
contradiction. So ¢° = B¢®, implying by the Froebinius Theorem ¢“ = ag®
for some a > 0. But @ must consume some good ¢ at some state g, and for
this ¢ and o, ¢° p,.=D.u%(x4, n,), while ¢° po =D ub(x5, n,), so that
a<o* |

REFERENCES

1. T. BewLEY, The optimum quality of money, in “Models of Monetary Economics”
(J. Karaken and N. Wallace, Eds.), Federal Reserve Bank of Minneapolis, 1980.

2. D. DUFFIE, J. GEANAKOPLOS, A. MAs-COLELL, AND A. MCLENNAN, “Stationary Markov
Equilibria,” Stanford University, 1988.

3. T. KEHOE, An index theorem for general equilibrium models with production,
Econometrica (1980).

4. T. KEHOE AND D. LEVINE, “Approximate Markov Equilibrium of Stationary Rational
Expectation Models,” University of Minnesota, 1987.

5. D. LeviNg, Infinite horizon equilibrium with incomplete markets, J. Math. Econ. 18
(1989), 357-376.

6. D. LEVINE, Asset trading mechanisms and expansionary policy, J. Econ. Theory 54 (1991),
148-164.

7. R. MARIMON, “Stochastic Turnpike Property and Stationary Equilibrium,” University of
Minnesota, 1987.

8. S. SPEAR, Rational expectations in the overlapping generations model, J. Econ. Theory 35
(1985), 251-275.

9. N. STOKEY, R. Lucas, AND E. PRescoTT, “Recursive Methods in Economic Dynamics,”
Harvard Univ. Press, Cambridge, MA, 1989.

10. R. TOWNSEND, Models of money with spatially separated agents, in “Models of Monetary
Economics” (J. Karaken and N. Wallace, Eds.), Federal Reserve Bank of Minneapolis,
1980.

11. M. WEITZMAN, Duality theory for infinite horizon convex models, Manage. Sci. 19, No. 7
(1973).

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



