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Abstract: We study repeated games with frequent actions and frequent imperfect public 

signals, where the signals are the aggregate of many discrete events, such as sales or 

tasks. The high-frequency limit of the  equilibrium set depends on both the probability 

law governing the discrete events and on how many events are aggregated into a single  

signal. When the underlying events have a binomial distribution, the limit equilibria 

correspond to the equilibria of the associated continuous-time game with diffusion 

signals, but other event processes that aggregate to a diffusion limit can have a different 

set of limit equilibria. Thus the continuous-time game need not be a good approximation 

of the high-frequency limit whenever the underlying events have three or more possible 

values. 
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1. Introduction 

We study the limits of equilibria of repeated games with imperfect public 

information as the frequency of observations and actions grows to infinity. To highlight 

the role of the information structure, we focus games between one long-run player and a 

sequence of short-run opponents, as in the classic Klein and Leffler [1981] model of a 

long-run firm facing a sequence of consumers, each of whom purchases only once. In the 

Klein-Leffler model, each period the firm chooses an intended quality level but the 

production process is stochastic, so that the realized quality may differ from the intended 

one.
2
 Consumers will only purchase if the firm is expected to try to produce high quality 

in the current period; the firm has a short-run incentive to cut costs and produce low 

quality, but there can be equilibria in which the firm tries for high quality to avoid 

loosing future sales.
3
 As a second illustration, the non-strategic players could be 

shareholders, and the long-run player the manager of the firm. The manager chooses an 

effort level, but this is not observed by the shareholders, who do observe the realized 

sales in each period. Because the long-run player’s action is observed with noise, the set 

of equilibria depends on the information structure, and typically efficient payoffs cannot 

be approximated by equilibria, even in the limit as the discount factor tends to 1 

(Fudenberg and Levine [1994]).  

We show how the best equilibrium payoff for the long-run player depends on the 

information structure, and in turn on how the relevant characteristics of the information 

structure change as the observation period shrinks. 
4
 Our work builds on our earlier paper 

Fudenberg and Levine [2007a], which provides general conditions for a sequence of 

discrete-time games with period length going to zero to have a non-trivial limit 

equilibrium. Using the general result from the earlier paper, we can reduce the study of 

                                                 
2
 In the original Klein-Leffler model, the production technology was deterministic. 

3
 The key aspect of these “short run players” is that they are strategically myopic and do not try to influence 

the future play of the long run player. The same analysis applies when the “short run players” are replaced 

by a continuum of infinitesimal long-lived players, with the large player observing only the aggregate play 

of the small ones.  
4
 In more general games, the set of equilibrium payoffs will depend on the information structure in more 

complicated ways, but our calculation of the “limit informativeness” of various sequences of signal 

structures will still apply.   
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the limit equilibria to the analysis of the “asymptotic informativeness” of the signal 

structure. The per-event informativeness is all that matters if players observe each event 

separately, yet many processes with different per-event informativeness converge to the 

same diffusions. This is why the equilibria of the controlled-diffusion case can be 

different than the limit equilibria. In some cases, frequent interactions permit fully 

efficient outcomes, for example if consumers receive such accurate information that the 

firm can be induced to almost always produce high quality. In other cases, the 

equilibrium set collapses in the limit, and only the static equilibrium can be supported, so 

that the firm produces low quality forever.   

We focus on cases where the public signal is an aggregate of several or many 

discrete events, such as sales, price changes, or components of quality, and in particular 

to the case where the distribution of this aggregate converges to a diffusion process.  We 

feel that this is of relevance  for interpreting results about continuous time games where 

players observe the state of a diffusion process, as in Sannikov [2007a], Sannikov and 

Skrypcaz [2007], Faingold and Sannikov [2007] and Fudenberg and Levine [2007a], 

because in most settings of interest the diffusion assumption is an approximation for a 

sum of discrete events.
5
  

We examine various ways of sending the time period of the game to zero and 

passing to a continuous-time limit. Our main point is that these limits all correspond to 

the idea that players act “very frequently,” but the same limiting signal distribution may 

correspond to ways of passing to the limit that have very different limit equilibria. We 

also highlight the role of “information aggregation” in determining the limit equilibrium 

payoffs. That is, we ask when does observing the sum of many signals lead to a larger 

limit equilibrium set than observing the signals one at a time? Our previous paper showed 

that there are efficient limit equilibria if deviations increase the volatility of the diffusion, 

but not when deviations decrease the volatility. We relate the differing conclusions in 

these two cases to their differing aggregation properties: when deviating leads to 

increased volatility, the signal structure is more informative when players observe the 

aggregate of the discrete events instead of observing each event as it occurs, and the 
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informativeness becomes infinite as players aggregate more and  more observations; this 

is not the case when deviating lowers volatility. Finally, our results show that the usual 

continuous-time games with controlled diffusions correspond to some but not all of the 

ways that the discrete-time observation structures can converge to a diffusion, so the 

standard continuous-time model is “too small” to incorporate all of the relevant limit 

objects.
6
 

Like the earlier paper, this one is related to Abreu, Milgrom, and Pearce [1991], 

who studied the strongly symmetric pure-strategy equilibria of a repeated partnership 

game in discrete time when players observe the realization of a Poisson process. Our 

work is also similar to Sannikov and Skrypacz [2007]. They consider a game with two 

long-run players observing the infinite-dimensional sample path of a continuous-time 

process at discrete intervals. Instead of considering games with two long-run players, we 

study a game with a single long-run player facing a sequence of short-run opponents, 

each of whom plays only once but knows about past outcomes. Unlike Sannikov and 

Skrypacz, we allow mixed as well as pure strategies. 

Our work is related to papers that construct a series of discrete-time games whose 

limit equilibria correspond to the equilibria of the continuous-time game with diffusion 

signals, as in Hellwig and Schmidt [2002] and Sannikov [2007b].  The main difference is 

in focus: The earlier papers are in the spirit of a lower hemicontinuity argument, showing 

that there exists a sequence of discrete-time games that provide a foundation for the limit 

game; our work points to, loosely speaking, a failure  of upper hemicontinuity.  

On a more practical level, the equilibria of games played at high but finite 

frequency depends on the informativeness of the available signals. Even when these 

signals can be well approximated by a diffusion, the equilibria of the standard continuous 

time models may not be a good approximation of the finite-frequency equilibria, unless 

the underlying signal process is binomial. Otherwise, whether or not the continuous time 

                                                                                                                                                 
5
 Diffusion processes are continuous, yet processes such as sales or price are inherently discrete, and so 

players would observe at most a single transaction in each period if they monitor the process at a 

sufficiently high frequency. 
6
 This suggests that one might want to construct a larger space of continuous-time games, as done by  

Fudenberg and Tirole [1985] and Simon and Stinchcombe [1989] in a related context, but that remains a 

topic for future work. 
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results are relevant is an empirical issue, and is not a necessary consequence of the 

periods being short. 

2. The Model 

A long-run player 1 plays a stage game with a short-run player 2 who is 

completely impatient.  To focus attention on the information-theoretic aspects of the 

problem we restrict attention to the following 2x2 stage game 

 

 Player 2 

 Out  In 

+1 u ,0 u ,1 

 

Player 1 

-1 u ,0 u g+ ,-1 

Table 1: Stage-Game Payoffs 

 

where u u<  and 0g > . In the stage game, player 2 plays Out in every Nash 

equilibrium, so player 1’s static Nash equilibrium payoff is u , which is also the minmax 

payoff for player 1. Naturally player 1 would prefer that player 2 play In but he can only 

induce player 2 to play In by avoiding playing –1.   The highest feasible payoff for player 

1 is u g+ . The Stackelberg payoff of  /2u g+  can be obtained by a publicly observed 

commitment to play the mixed strategy (1/2, 1/2,)  but the highest repeated game payoff 

is u  when actions are observed (Fudenberg, Kreps and Maskin [1990]) and the highest 

payoff with imperfect public monitoring is strictly less than that (Fudenberg and Levine 

[1994]).   Our focus will be on determining when the repeated game with vanishingly 

small time periods has equilibria with normalized discounted payoffs that exceed u , and 

when it has equilibria with payoff approaching u , which we refer to as the  “first-best” 

payoff.  

 When the game is repeated, the length of a period is τ , and the subjective 

continuous time interest rate for the long-run player is r , so that her rate of time discount 

is re τδ −= . Each period, the stage game is played, and then the long-run player and 

subsequent short-run players observe a public signal z ∈ �  that depends only on the 

action 1a  of the long-run player. The public signal has finite support; its distribution is 

described by the density function 1( | , )f z a τ . In addition, we assume that the support of 
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the signal is independent of the action played, so that every possible signal has positive 

probability under every action.  

There is also a publicly observed public randomization device each period before 

actions are taken. The public history is the history of the signal and the public 

randomization device.
7
 Our solution concept is perfect public equilibrium or PPE: these 

are strategy profiles for the repeated game in which (a) each player’s strategy depends 

only on the public information, and (b) no player wants to deviate at any public history.
8
 

  The characterization of perfect public equilibria in this setting is straightforward, 

using standard dynamic programming techniques in the spirit of Abreu, Pearce and 

Stachetti [1990]. Because we allow public randomization, the set of perfect public 

equilibrium payoffs to LR is a line segment between a best and worst equilibrium; 

because the static Nash equilibrium involves no entry and gives LR her minmax, the 

worst equilibrium is for LR to get u . So the set of PPE payoffs to the LR player is 

completely described by its upper bound, which we denote by *v .
9
 Proposition 1 in  

Appendix 1 shows that *v  can be computed as the solution to a static linear programming 

problem, where the control variables are the “continuation payoffs” ( )w z  that the player 

expects to receive following each signal z ; this result is used in the proof of our next 

proposition.  

 Now suppose that the continuation payoffs are restricted to the two values *v  

(“reward”) and u  (“punishment”). Define p  as the probability of punishment when the 

action chosen is +1 (that is, p  is the probability under action +1 of signals such that 

continuation play is “punishment”) and define q  as the probability of the punishment 

outcome when the action chosen is –1. We say that a pair ( , )p q is feasible  if it can be 

generated by some specification of the function w. 

                                                 
7
 Technically speaking the public information also includes the short-run player’s action, but since public 

randomizations are available we can restrict attention to strategies that ignore the past actions of the short-

run player, and obtain the same set of outcomes of perfect public equilibria. To see this, observe that 

continuation payoffs can always be arranged by a public randomization between the best and worst 

equilibrium. If continuation payoffs depend on the play of the short-run player, the long-run player cares 

only about the expected value conditional on the signal of his own play. Since that expected value lies 

between the best and worst equilibrium, there is an equivalent equilibrium in which the continuation value 

is constant and equal to the conditional expected value. 
8
 See Fudenberg and Tirole [1991] for a definition of this concept and an example of a non-public 

equilibrium in a game with public monitoring. 
9
 The arguments of Fudenberg and Levine [1983] or Abreu, Pearce and Stachetti [1990] can be adapted to 

show that the set of PPE payoffs in this game is compact, so the best PPE payoff is well-defined. 
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Proposition 2: (Fudenberg and Levine [2007a])   

(a) For a fixed discount factor δ , there is an equilibrium with the long-run player’s 

payoff above u  if and only if there are feasible  , [0,1]p q ∈  that satisfy   

 
( ) ( ) (1 )

1
u u q p

g p p

δ

δ

− − −
− ≥ . (*) 

In this case the highest  PPE payoff to the long-run player is  

 ,  feasiblemaxp q
pg

u
q p

−
−

. (**) 

When (*) is not satisfied, the highest PPE payoff is u .  

(b) There is a PPE  that supports the highest PPE payoff that has the “cutoff likelihood 

property:” There is a cutoff *λ  such that if 1 1( | 1, )/ ( | 1, ) *f z a f z aτ τ λ= − = + >  

then ( )w z u= , if 1 1( | 1, )/ ( | 1, ) *f z a f z aτ τ λ= − = + <  then ( ) *w z v= .
10

  

Note that the best equilibrium *v  is close to the first best if there are feasible ( , )p q  with 

/( )p q p−  small.  

3. Continuous-Time Limits 

Our interest is in how the set of PPE payoffs varies with the period length, and in 

particular its behavior as the time period shrinks to zero. We consider then families of 

games indexed by the period length τ . We must now describe how the signal z  varies 

with the period length τ . Our basic scenario is that z  is an aggregate of discrete random 

variables representing, for example, sales, prices, or other transaction data.
11

 Specifically, 

we suppose that z  is the sum of some number of “events,” by which we mean 

independent identically distributed random variables jZ  whose support is a fixed finite 

set, regardless of the action profile.  

                                                 
10

 Note that when the likelihood ratio is exactly *λ  the continuation value may lie anywhere in the 

interval
*[ , ]u v . 

11
 This model does not capture the case where the signal involves an occasional catastrophic event, such as 

a failed surgery, bad reaction to a drug, or airplane crash. That type of signal is better modeled in 

continuous time as a Poisson process. See Celentani, Levine and Martinelli [2007]. 
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Recall that the length of a period, that is, the time between moves, is τ ; the 

“observation frequency” we mentioned in the introduction is thus /τ1 . We assume that 

the length of time between events (that is between realizations of the jZ ) is τ∆ ≤ , so 

that the event frequency is /1 ∆ . We are interested in the case in which 0τ →  

(implying that 0∆ →  as well). It is convenient to assume that τ  is a specified 

continuous strictly increasing function of ∆  with (0) 0τ = . We then define 

( ) ( )/k τ∆ = ∆ ∆ ; players observe the integer number ( )k ∆   of signals when the time 

between moves is ( )τ ∆ . In general, we allow the distribution of jZ  and its support to 

depend on ∆ , and to emphasize this dependence we will write ( )jZ ∆ . (Recall that this is 

necessary for the distribution of the aggregate z  to approach a diffusion.) However we 

will assume that the cardinality of the support of ( )jZ ∆  is a constant, independent of ∆ .  

The information available at the end of the period beginning at t  is the 

signal
 

 ( )/

/
( )

t

jj t
z Z

+ ∆

= ∆
= ∆∑ τ

. Our goal is to characterize the set of equilibrium payoffs 

in the limit. Specifically, if for a given interest rate r  there are  positive τ  and ε  such 

that for all non-negative smaller values 0 < <τ τ  the game with period length τ  and 

interest rate r  has an equilibrium with payoff at least u ε+ , we say that there is a non-

trivial limit equilibrium for r .  If there is any positive interest rate r  for which there is a 

non-trivial limit equilibrium, we say simply that there is a non-trivial limit equilibrium.  

If for all 0r >  and all sequences 0τ →  the equilibrium payoff converges to u  we say 

there is only a trivial limit. (In principle there can be cases where the limit depends on the 

sequence chosen, however, we do not provide names for these cases.) If there is an 

0r >  such that for all 0 r r< < , all 0ε > , and all sequences 0τ → , there is a 

sequence of equilibria with payoff converging to u − ε  we say there is an efficient limit 

equilibrium. If for all ( , ) (0,0)rτ →  there are equilibria that have payoffs converging to 

u , we say that there is an efficient patient equilibrium. 
12

 

  

                                                 
12

 Note that the definition of a non-trivial limit equilibrium allows the interest rate r  to be arbitrarily small, 

but it requires that the payoff in question to be supportable as an equilibrium when that interest rate is held 

fixed as the period length τ  goes to 0.  The definition of an efficient patient equilibrium allows the interest 

rate to go to 0 as well. However the efficient payoff must be attained in the limit regardless of the relative 

rates at which τ  and r  converge, so that in particular efficiency must be obtained if we first send τ  to 0 

with r  fixed and only then decrease r . The other order of limits, with r  becoming small for fixed τ , 

corresponds to the usual folk-theorem analysis in discrete-time games. 
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 The following corollaries all apply to sequences of equilibria for the games 

indexed by observation period τ . First, for each fixed τ  we define 

( ) ( ( ) ( ))/ ( )q p p= −ρ τ τ τ τ  which we may view as the signal to noise ratio for  the  

specified equilibrium. From (**) we see that if *( )v u>τ , then it must be that  

 ( )
g

u u
>

−
ρ τ . 

We also see that in order for the payoffs to converge to u  it must be that 

0lim ( )→ → ∞τ ρ τ ; it will be helpful to remember that 0lim ( )→ → ∞τ ρ τ  implies 

( ) 0p τ → .  

Corollary 1:
13

  

(a) If for some sequence ( , ) (0, 0)r τ →  there is no sequence of equilibria with 

( ) → ∞ρ τ  then there is not an efficient patient equilibrium. 

(b) If for all 0r > , all sequences 0τ → , and all equilibria, ( ) 0→ρ τ , then there is 

only a trivial limit equilibrium. 

(c) If for all 0r >  and all sequences  0τ →  there is an 0ε >  and a sequence of 

equilibria with  

 ( )
g

u u
> +

−
ρ τ ε   

and ( )p τ  bounded away from 0, there is a non-trivial limit equilibrium for any r . 

 

The first two parts of this result are immediate. Part  (c) follows from the observation that 

( )
g

u u
>

−
ρ τ implies that the LHS of (*) is positive, so *

0lim ( )v u→ >τ τ  in cases 

where the RHS of (*) converges to 0, which is true in particular when ( )p τ  is bounded 

away from 0. 

In many cases of interest, the best equilibria will have ( )p τ  converging to 0.  

Corollary 2:  

                                                 
13

 Our earlier paper states a result with the same conclusion under the  additional hypothesis that the 

sequence of equilibria is “regular,” meaning that ( )ρ τ  and ( )( ( ) )/q pτ τ τ−  both converge. 
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(a) If for all 0r >  and all sequences 0τ → , along any sequence of best equilibria 

( ) /( )g u u> −ρ τ  implies / 0q τ → , then there is only a trivial limit.
14

  

(b) If for every 0θ >  and every sequence ( , ) (0, 0)r τ →  there is a sequence of equilibria 

with ( )/q ≥τ τ θ  and ( ) → ∞ρ τ , then there is an efficient patient equilibrium 

(c) If there is an 0r >  such that for all 0 r r< < , every 1>λ  and every sequence 

0τ →  there is a sequence of equilibria with ( )p τ  constant and 0lim ( )/ ( )q p→ =τ τ τ λ  

then there is an efficient limit equilibrium.  

Proof: We can rewrite (*)  as  
( ) ( )

1
/

u u r

g p

−
− ≥

ν τ
ρ

τ
, where ( ) ( 1)/re r= −τν τ τ  

converges to 1 as 0τ → . Because ( )/q p pρ = − , /( 1)p q ρ= + , so (*)  is equivalent 

to 
1

( )
1

q
r

u u

g

+
≥

−
−

ρ

τ
ρ

. The RHS of this inequality is bounded below by 
rg

u u−
, to 

which it converges as ρ → ∞ .   

This immediately yields parts (a) and (b). For (c), note that when λ  is sufficiently 

large, the LHS of (*) is positive and bounded away from 0; the RHS converges to 0, so 

using the strategies that generate these probabilities yields a non trivial limit equilibrium, 

and the payoff to this equilibrium converges to u  as λ → ∞ . 

� 

4. Converging to Diffusions 

We now restrict attention to information processes that converge to diffusion 

processes in the limit, because we want to relate this limit to the predictions of 

continuous-time controlled-diffusion models.  The idea is that the diffusion process 

reflects the aggregation of information, with the limiting normal distribution arising from 

central limit theory. 

Our basic diffusion hypothesis is that for each fixed action 1, 1i = + −  of the 

long-run player the sum  /

1
( )

t

jj
z Z

∆

=
= ∆∑  converges to a diffusion as 0∆ → . That is, 

                                                 
14

 The best equilibrium payoff exists for each τ  but there may be multiple equilibria with this payoff. 
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in the limit 0∆ → , when the long-run player’s action is held fixed from time 0 to any 

time t, the value of the observed signal at time t is a normally distributed random variable  

with mean itµ  and standard deviation 2
i tσ .  We continue to assume that the support of 

the z ’s is independent of the action chosen, so that when τ = ∆  and players observe 

each individual realization of ( )jZ ∆ , no outcome perfectly reveals which of the two 

actions was played. As ∆  and τ  converge to 0, the distribution of the ( )jZ ∆ will 

change; we let f ∆  denote the ( )jZ ∆ , and f τ  the density of the aggregate z.  

The ( )jZ ∆  represent underlying economic events that are being aggregated. As 

long as their distribution is well behaved, the central limit theorem applies and each of 

the triangular arrays converges to a diffusion.
15

 In fact, many different distributions on 

the ( )jZ ∆  may generate the same diffusion. Our goal is to understand whether the limit 

diffusion is sufficient to characterize the set of limit equilibria or whether the details of 

the particular triangular array matter. In practice, the distribution of the underlying events 

depends on the situation being modeled. In some settings it is natural to think of the data 

as having a binomial distribution. For example, if the data being observed is sales data, 

and the items being sold are cars or refrigerators or other large durable goods, then it is 

reasonable to think that a consumer either buys the item or not, but does not buy several 

at once. On the other hand for goods sold by volume or weight each individual sale can 

take on many different values, so the underlying data being aggregated has a non-trivial 

distribution of its own. 

We take up first the simplest case, that where the underlying ( )jZ ∆ do in fact 

follow a binomial distribution.  This distribution has the special feature that its mean and 

the variance are linked to each other: the variance is equal to the product of the mean and 

one minus the mean. As the next result shows, this link between the mean and the 

variance implies that two binomial arrays that converge to diffusions and have common 

outcomes must have the same volatility.    

                                                 
15

 The Lindberg-Feller condition for the central limit theorem is that the ( )jZ ∆ s have finite mean and 

variance; to apply this to arrays, where the probability law changes with∆ , it is sufficient that these 

bounds hold uniformly in ∆ . 
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Proposition 3:  Suppose that the signals are sums of i.i.d. binomials ( )jZ ∆  where the 

common outcomes are ( ) ( )x y∆ > ∆ , and that the probability of ( )x ∆  under action 

1, 1i = + −  is ( )i ∆α  with 0lim ( ) ,0 1i i i∆→ ∆ = < <α α α . If under each action i the 

sums   
 /

1
( )

t

jj
Z

∆

=
∆∑ converge to a diffusion with drifts iµ  and volatilities  

2
iσ  as 

0∆ → , then 1 1+ −=σ σ . 

Proof: In Appendix 2.                                                                                                  � 

 

The equal volatility case is important because in this case the equilibrium with 

respect to the limiting diffusions must be trivial. This does not necessarily imply that if 

triangular arrays converge to limit diffusions with the same volatility the limit equilibria 

are trivial. Indeed, the next section gives an example where the signals converge to equal-

volatility diffusions and yet there is an efficient limit equilibrium. However, the limit 

equilibrium must be trivial whenever the variances of the aggregate signals converge to 

the common limit at a sufficiently fast rate, and if there is enough aggregation of signals 

that we can apply an appropriate variant of the central limit theorem. The next result 

shows that the assumption of binomial signals plus some technical assumptions does lead 

to this result, where the “enough aggregation of signals” condition is that 

( ) ( )/k ∆ = ∆ ∆τ grows quickly enough that 2/7
0lim ( )exp( ( ) )k∆→ ∆ ∆ → ∞τ . 

Proposition 4: Suppose  

(i) 2/7
0lim ( )exp( ( ) )k∆→ ∆ ∆ → ∞τ  

(ii) the signals are sums of i.i.d. binomials ( )jZ ∆  where the common outcomes are 

( ) ( )x y∆ > ∆ , and the probability of ( )x ∆  under action 1, 1i = + −  is ( )i ∆α  with 

0lim ( ) ,0 1i i i∆→ ∆ = < <α α α  

(iii) under each action i, 
 /

1
( )

t

jj
Z

∆

=
∆∑ converge to non-degenerate diffusions with drifts  

µi  and volatilities 
2σ i .  

Then all limit equilibria are trivial. 
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Proof Sketch: The proof is in Appendix 3, here is a rough outline: The idea is to use the 

central limit theorem and a continuity argument to extend our earlier result that the limit 

equilibrium is trivial when the underlying signal structure is a pair of diffusions with 

equal volatility.  If we could restrict the analysis to strategies where the cutoff for 

punishment was fixed relative to the standard error of the signal the proof would be 

straightforward, but we have to also consider punishment cutoffs that become large 

relative to the standard error. This requires us to use a “large deviations” argument that 

extends an argument from Feller [1972] from the sum of i.i.d random variable to the case 

of triangular arrays.   

To understand why this result is needed, recall that the usual central limit theorem 

concludes that the probability ( )nF x  that the normalized sum of n  draws is below any 

fixed x  converges to the probability ( )xΦ  that a standard normal variable is below x .  

Feller’s large deviations argument extends this to give conditions under which  

 
1 ( )

lim 1
1 ( )

n
n

n
n

F x

x
→∞

−
=

−Φ
  

when nx  is not fixed but rather limn nx→∞ = ∞  at a rate slowly enough that 

1/6 0nn x− → . Feller’s result does not directly apply to our setting, because the 

distribution of the underlying variables changes with the period length; we report the 

extension of his result to our case of triangular arrays in Fudenberg and Levine [2007b].  

 The proof also uses a sharpening of Proposition 3, reported in Lemma A.2.1: not 

only do the two binomial arrays converge to diffusions with a common volatility, the 

variances of the two signal processes converge to equality sufficiently quickly for our  

argument to be valid.  � 

  

Proposition 4 assumes that 2/7
0lim ( )exp( ( ) ) 0k∆→ ∆ ∆ =τ . Without this 

condition, we cannot use the normal approximation, so we do not have a general result. 

However, one important special case is the binomial construction of diffusions found in 

many textbooks, such as Stokey [2008]. Here 1/2( ) ( )x y∆ = − ∆ = ∆σ , and 

1/2( ) .5 .5 /α µ σ∆ = + ∆ , and the triangular array converges to a diffusion with drift µ  

and volatility 2σ .  In this case it is clear how the assumption that the support of the 

binomials is the same under both actions forces the two diffusions to have the same 

volatilities, and moreover we can determine what happens when k  is small.  
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Proposition 5: If the player’s signals are as in the standard binomial construction of 

diffusions and 0lim ( ) ( ) 0k∆→ ∆ ∆ =τ  then there are only trivial limit equilibria. 

Proof:  Assume that the drift 1µ−  under action 1−  exceeds the drift 1µ+  under action 

+1. (The case 1 1µ µ− +<  is symmetric and it is obvious that there is only a trivial limit 

equilibrium when the drifts are equal.) For any finite number k  of signals, the largest 

possible value of ( )/q p pρ = −  is obtained with strategies that punish only if the sum 

equals kh  so that every realization was h+ .  Recall that we must have the case of equal 

volatilities 1 1σ σ+ −= . We compute 

 
1/2

1 1
1/2

1 1

.5 .5 ( / ) /
1 1

.5 .5 ( / ) /

k
kq p q

p p k

µ τ σ
ρ

µ τ σ

− +

+ +

 +− = = − = −  + 
. 

This goes to zero if the log of the first term goes to zero. We calculate 

[ ]( ) [ ]( )
[ ] [ ]( )

( ) ( )

1/2 1/2
0 1 1 1 1

1/2 1/2
0 1 1 1 1

1/2
0 1 1 1

lim ( )log .5 .5 ( )/ ( ) / ( )log .5 .5 ( )/ ( ) /

lim ( ) ( )/ ( ) / ( )/ ( ) /

lim ( ) ( ) / 0

k k k k

k k k

k

µ τ σ µ τ σ

µ τ σ µ τ σ

τ µ µ σ

∆→ − + + +

∆→ − + + +

∆→ − + +

∆ + ∆ ∆ − ∆ + ∆ ∆ =

∆ ∆ ∆ − ∆ ∆ =

∆ ∆ − =

 

where the last equality follows from 0lim ( ) ( ) 0k∆→ ∆ ∆ =τ  . Thus by corollary 1b, there 

is only a trivial limit equilibrium.                                                                                    � 

 

Proposition 5’s hypothesis that 0lim ( ) ( ) 0k∆→ ∆ ∆ =τ  overlaps with Proposition 

4’s hypothesis that 2/7
0lim ( )exp( ( ) )k∆→ ∆ ∆ → ∞τ , so combining the two results 

gives a complete characterization of the limit of standard binomials:  

Corollary 3: If the player’s signals are as in the standard binomial construction of 

diffusions then there are only trivial limit equilibria. 

To relate this result to the previous one, and to our earlier general analysis, note 

that when 0lim ( ) ( ) 0k∆→ ∆ ∆ >τ , the sequence of strategies “only punish if every 

outcome was h+ ” has a limiting value of ρ  that is non-zero. However, along this 

sequence we have / 0q τ → , so as Corollary 2a shows this is no help.  
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5. Trinomial Informational Limits 

While some data, such as sale or no sale, may have a binomial distribution, other 

data, such as the number of units sold, or their price, will generally have more than two 

values. The simplest case beyond the binomial is the trinomial: we shall see that the 

trinomial breaks the link between the volatilities under the two different actions, so the 

equal variance/degenerate limit case seems to be the exception rather than the rule. 

Moreover, in these more general limits, the equilibria of the game with the limiting 

diffusion do not correspond to the limit of the equilibria when the signal is the aggregate 

of many small events. This suggests that the continuous time game is “too small” to 

capture all of the more general ways that signal processes can be approximated by 

diffusions.  

Fix a pair of drifts 1 1,+ −µ µ  and a pair of volatilities 2 2
1 1,+ −σ σ . We will construct a 

particular family of pairs of trinomials such that each trinomial converges to a diffusion 

with the corresponding drift and volatility, and use this family to explore various ways of 

passing to the continuous time limit.  We focus on three simple cases: a “bad news” case 

where the drifts are equal and deviating increases the volatility; a “good news” case with 

equal drifts where deviating decreases the volatility, and the case of equal volatilities and 

unequal drifts.  

The pairs of signal processes will be indexed by a free parameter γ  that is not 

determined by the limit diffusions. For any 1γ ≥ , we set 2 2
1 1max( , )+ −=γ γ σ σ . Now 

consider a pair of trinomial distributions with the same three possible outcomes, 

( ),0, ( )x h h= − ∆ ∆ , where ∆  is the period length  and 1/2 1/2( )h γ∆ = ∆ . The 

probability distributions on the outcomes depends on action 1, 1i = + − , and γ  as 

follows: The probability of outcome 0 is 2( )/i iα γ σ γ= − , independent of ∆  (note 

that this is always non negative and less than 1), and the probability of outcome h+  is     

 
1/2

1/2

1
( )

2 2
i i

i

α µ
β

γ

− ∆
∆ = + . 

 A simple example may help put this in perspective. The sign of x  and the size of 

the step are simply normalizations so that the normalized signals converge to a diffusion, 
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so we may think of the underlying data as “0 sales” corresponding to ( )x h= − ∆ , “a 

single sale” corresponding to 0x =  and “a double sale” corresponding to ( )x h= + ∆ . 

Let us focus on the bad new case where 1 1σ σ− +> , and take 1 12, 1− += =σ σ  and 

2γ = . Then 4γ = , 1 13/4, 1/2+ −= =α α , so that a sale is more likely if action 1+  

is taken. Ignoring the “small noise term” of order 1/2∆ , the probability of no sale or a 

double sale when 1a = +  is 1/8 , and when 1a = −  the probability of no sale or a 

double sale is 1/4 . That is, action +1 increases the likelihood of a single sale at the 

expense of both no sales and double sales.   

As we shall see, in both the bad news and good news cases, the per-event 

informativeness of the individual events is constant as 0∆ → . In the bad news case the 

informativeness of the best test, and thus the best limit equilibrium payoff, is independent 

of the parameter γ . However, in the good news case γ  determines the informativeness 

of the best test and also the best limit equilibrium payoff.  

The good and bad news cases also differ in their aggregation properties: In the 

bad news case, aggregating more signals leads to a more informative test; so that when 

/k τ= ∆ → ∞  the best equilibrium approaches full efficiency; which is the result  

when players observe a diffusion. In the good news case, aggregating more signals can 

lead to a less informative test, and the effect of aggregation is ambiguous, and depends on 

the “free” parameter γ . 

 To analyze the trinomial example, we begin by computing the means and 

variances. We let iE  denote the expectation conditional on action i. Then the expected 

values of the trinomial distribution described above are  

 

[ ]

1/2 1/2
1/2 1/2

1/2 1/2

( ) 0 (1 )( )

(2 (1 ))

i j i i i i

i i

i i i

E Z h h

h

h

∆ = + + − − −

= − −

∆ ∆
= = ∆ = ∆

β α α β

β α

µ µ γ µ
γ γ

 

and the variances are   

 

( )22 2 2 2

2 2

2 2 2

[ ( ) ] [ ( )] (1 )

(1 )

i j i j i i

i i

i i

E Z E Z h∆ − ∆ = − − ∆

= − ∆− ∆ =

∆− ∆

α µ

α γ µ

σ µ
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Thus if we hold fixed the actions up to a real time t, the sum of the process up to time t  

has mean itµ  and variance 2 2
i it tσ µ− ∆ , which converges to 2

i tσ  as ∆  goes to 0. 

Moreover, if we look at the sum up to time ( )τ ∆ , where ( )/τ ∆ ∆  goes to infinity, we 

again have a triangular array, so the position at ( )τ ∆  is again described approximately by 

a normal.  

5.1: Bad news case:  2 2
1 1σ σ− +>   

In the bad news case, we can show that if the ratio of volatilities is sufficiently 

large then the limit equilibrium is non-trivial, regardless of the amount of information 

aggregation. We also show that if the amount of aggregation, as measured by the ratio 

/k τ= ∆ , goes to infinity, then the first best can be approximated arbitrarily closely, so 

there is an efficient patient equilibrium. Of course full efficiency is not possible with a 

finite amount of information aggregation. This shows that the limit equilibria are not 

determined by the assumptions that the limit distribution of the signals is a fixed pair of 

diffusions and that the τ  and ∆  both go to zero. Finally, by allowing the variance of the 

trinomials to converge to a common limit as τ  and ∆  go to zero, we can construct a 

sequence of games with an efficient limit equilibrium even though the limit information 

structure – a diffusion with common volatilities – has only a trivial equilibrium. To 

simplify the presentation, we restrict attention to the case where both diffusions have zero 

drift, but this is not important for the results.  

To begin consider ( )τ ∆ = ∆ . Since the bad action has a higher volatility, and the  

two actions both have zero means, the best equilibrium payoff for period length  τ = ∆  

can be attained with a strategy that punishes with some positive probability ( )π ∆  

following the signals h+  and h−  and punishes with probability zero when the signal is 

0. (The likelihood ratio for punishing on 0 is less than one, and the symmetry of the 

problem means that treating h+  and h−  symmetrically is one of the solutions to the 

linear programming problem that defines the optimum). Such strategies have signal to 

noise ratio  

 
2 2 2

1 1 1 1
2 2

1 1 1

1
1 1 1

1

q

p
− − − +

+ + +

− −
= − = − = − =

−
α γσ σ σ

ρ
α γσ σ

,  
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independent of γ ,  γ , ∆ , and ( )π ∆ . If π  is a constant independent of ∆  then 

11 )p π α+= ( −  is independent of ∆  as well. Hence by Corollary 1c these strategies 

support a non-trivial limit equilibrium for interest rate r  if the ratio, 2 2
1 1/σ σ− +  is 

sufficiently large.  Moreover the simple form of the observation structure here lets us 

compute the best limit equilibrium payoff: Since no choice of cutoff can yield a higher 

value of ρ  than 

 
2 2
1 1

2
1

− +

+

−σ σ

σ
,  

the best limit equilibrium payoff is   

 
2
1

2 2
1 1

u g+

− +
−

−
σ

σ σ
. 

Now consider 2τ = ∆ . Here the most informative test is to punish only if the 

outcome is 2h+  or 2h− , this has  

 
2 2

1 1
2 2

1 1

((1 )/2) (1 )
1 1

((1 )/2) (1 )
− −

+ +

− −
= − = −

− −
α α

ρ
α α

=

22
1

2
1

1
σ

σ
−

+

   −   
  

independent  of ∆ , and since the punishment probability is also independent of ∆  we 

again have a non-trivial equilibrium. Moreover, because the maximal value of ρ  

(consistent with non-zero punishment probability) has increased, aggregating two signals 

allows a better limit equilibrium payoff.  

Now consider the case 1/2τ = ∆  so that 1/2( )k −∆ = ∆ → ∞  as 0∆ → .Here 

we make use of the following more general result: 

Proposition 6: In the bad news case ( 1 1/ 1σ σ− + > ) if 0lim ( )/τ∆→ ∆ ∆ = ∞  there is 

an efficient limit equilibrium. 

Proof: Our previous paper showed that there is an efficient limit equilibrium when 

players observe the state of a bad-news diffusion process; the proof uses that fact and a 

continuity argument to construct a sequence of equilibria satisfying the conditions of 

Corollary 2c. See Appendix 5 for details.                                                                         
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Corollary 4: There are sequences of information structures with efficient limit 

equilibrium where players observe the sum of discrete events, and these sums converge to 

a pair of diffusions with the same volatilities. 

Proof:  The idea is to use a diagonalization argument to obtain a sequence of trinomials 

where the ratio of variances goes to 1 sufficiently slowly that there is an efficient limit. 

To do this, consider a sequence 2 2
1 1{ / } 1n n nσ σ− + ↓  and to each 2 2

1 1( , )n n− +σ σ  associate a 

trinomial signal structure distribution { }nS ∆∆  as defined above, so that the sum of the 

public signal under information structure ,nS ∆  converges to a pair of diffusions with drift 

0 and volatilities 2 2
1 1,σ σ− + .  Let nG ∆  be the game with event frequency 1/∆ , 

information structure nS ∆ , and period length 1/2( )τ ∆ = ∆ . From Proposition 6, for any 

sequence of strictly positive 0nε → , there is a sequence of PPE nP ∆  for the nG ∆  with  

limit payoff nu ε−  as 0∆ → . 

 Now we diagonalize: For each j, pick j∆  so that 
jj

P ∆  has payoff at least 

2 ju ε− ; let 
jj jG G ∆≡  be the corresponding game; then the sequence of games { }jG  

has a sequence of PPE 
jj

P ∆  with payoffs converging to u .                                            � 

 

This shows that conclusions based on the hypothesis that the variances are equal 

in the limit do not apply to the limit of the equilibria along the sequence without 

additional information, such as the rate at which the variances become equal. 

5.2. Good News Case 2 2
1 1σ σ− +<   

Once again, we simplify by setting the drifts equal to 0, and begin with the case 

( )τ ∆ = ∆ .  The optimal equilibrium with this signal structure prescribes punishment with 

positive probability when 0jZ =  and zero probability of punishment on ,h h+ − , so the 

signal to noise ratio is  

 
2 2 2 2
1 1 1 1

2 2
1 1

1
( 1) ( 1)

q p

p
+ − + −

+ +

− − −
= = − =

− −
γσ σ σ σ

ρ
γ σ γ σ

. 

This is independent of ∆ , but not independent of γ , even though γ  is not pinned down 

by the limit diffusion. As we will see, γ  will matter not only for the limit equilibria in the 

case of no information aggregation, but also for whether the best limit equilibrium payoff 

is improved by increased aggregation.  
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From Proposition 2 a necessary condition for a non-trivial limit equilibrium is 

 
2 2
1 1

2
1

/( )
( 1)

g u u+ −

+

−
> −

−
σ σ

γ σ
. 

Note that ρ → ∞  as 1γ → . This is because when 1γ = , outcome 0 has 

probability zero under action +1, so incentives can be provided at no cost. Conversely,  

0→ρ  as → ∞γ , because in this case outcome 0 occurs with probability near one 

regardless of the choice of action. 

A similar argument to that of the previous subsection shows that when there is a 

non trivial limit equilibrium, the best limit equilibrium payoff is 
2
1

2 2
1 1

( 1)
u g−

+ −

−
−

−
γ σ

σ σ
. With 

this case as a baseline we now investigate the effect of information aggregation on the 

limit equilibrium payoffs. 

The simplest case of information aggregation is ( ) 2τ ∆ = ∆ . Because agents only 

observe the sum of the two periods outcomes, the possible signals take the values 

{ 2, 1, 0,1,2}− − .   As before, the payoffs in the optimal limit equilibria will depend on the 

highest possible limiting value of 1
q

p
= −ρ , so we want to determine the maximal 

value of /q p .  

Even without a thorough analysis, it is immediate that aggregation hurts when 

1γ = : Here when τ = ∆ , 0p = , ρ = ∞ , and the equilibrium is fully efficient, while 

clearly 0p >   when ( ) 2τ ∆ = ∆ , so that the highest attainable ρ  is finite and thus the 

limit equilibrium payoff is bounded away from efficiency. 

At the other extreme, where γ → ∞ , we have 1p q= =  when τ = ∆ , so that 

0ρ =  and there is only the trivial equilibrium. In this case aggregating two signals could 

in principle lead to a higher value of ρ  and a better limit equilibrium payoff. Appendix 5 

gives a detailed analysis of this case, and shows that for some parameter configurations 

aggregating two signals does indeed lead to a better limit equilibrium payoff, specifically 

in the case where  γ  is very large and the short-run gain to deviating, g,  is very small. 
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 Now consider the case 1/2( )τ ∆ = ∆ , so that the signals observed by the players 

in each period converge to a pair of diffusions. It is important to note that the properties 

of the limiting diffusion, and thus its limit equilibria, are independent of γ . Thus by 

specifying 1 1

1

/( )g u u+ −

−

−
> −

σ σ

σ
 (so there is a non trivial limit equilibrium for the 

diffusion) and γ  large we can construct examples where there is only the trivial 

equilibrium when τ = ∆  and a non trivial limit when players aggregate infinitely many 

signals, while by specifying γ  near 1, and 1σ−  near 1σ+  , we have examples with a non 

trivial limit when  τ = ∆  and a trivial limit when players observe the diffusion. Thus 

there is no necessary connection between the equilibrium sets in the two cases, and the 

parameters of the limit diffusion are not sufficient to determine the nature of the 

equilibrium set when players observe each realization of the underlying process. 

 We should also point out that when 1 1

1

0 /( )g u u+ −

−

−
< < −
σ σ

σ
, so that the 

volatilities are in the interior of the range where the diffusion case has only trivial limit 

equilibria, then necessarily any sequence 2 2 2 2
1 1 1 1{( , )} ( , )n n nσ σ σ σ+ − + −→  will eventually 

lie in the interior of this range as well. We conjecture that we could thus use the large-

deviations arguments of Appendix 3 to show that any sequence of trinomials with 

variances converging to 2 2
1 1,+ −σ σ  as 0∆ →  will have only trivial equilibria. This result 

would leave open the question of whether the same conclusion holds for all processes that 

converge to the specified pair of diffusions. 

5.3. Equal variance, unequal mean 

Finally we turn to trinomials with equal variances and unequal means; this case 

will be very similar to the binomial case we discussed in Section 4. As there, we suppose 

that the bad action has a higher mean. With equal variances, 1 1α α− += , so 

( 1)/= −α γ γ ; the standard binomial case corresponds to 1γ =  and 0α = . 

  We begin with the case τ = ∆ . Here the best equilibria punish when the 

outcome is h+  which has probability 
1/2

1/2

1
( )

2 2
i i

i

− ∆
∆ = +

α µ
β

γ
, so  
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1/2 1/2 1/2 1/2 1/2 1/2

1 1 1
1/2 1/2 1/2 1/2 1/2 1/2

1 1 1

(1 )

(1 )

q

p

−
− − −

−
+ + +

− + ∆ + ∆ + ∆
= = =

− + ∆ + ∆ + ∆
γ α µ σγ µ σ µ γ

γ α µ σγ µ σ µ γ
 

Note that as 0∆ → , / 1q p → , just as in the binomial case, and as there the underlying 

per-event signal becomes completely uninformative in the limit.  As in the proof of 

Proposition 5, this implies that there is only the trivial equilibrium with any fixed level of 

aggregation, that is when kτ = ∆ . By analogy with our other results, we believe that this 

is also true when 0lim /τ τ→ ∆ = ∞ , but since the result does not apply to sequences 

where the variances are only equal in the limit, we have not tried to provide a formal 

proof. 

6. Conclusion 

Many different arrays converge to a given diffusion process, and the limit equilibria 

of these arrays is not in general determined by the parameters of the limiting diffusions, 

but binomial arrays are an exception to this result. Thus the equilibria of continuous-time 

games where players monitor the state of a diffusion process are perhaps best thought of 

as applying to cases where the diffusion specification is either exact or arises from 

aggregating binomial events.   

We have assumed throughout that players observe the aggregate of the process at 

each period; this is consistent with the idea that the diffusion comes from aggregation. If 

instead players do not merely see the aggregate, but observe the entire empirical 

cumulative distribution, they get the first-best limit payoff when volatilities are different 

and /τ ∆ → ∞  regardless of the ratio of the volatilities. This parallels the observation 

that observing the infinite-dimensional path of a diffusion for a finite time interval 

reveals its volatility, which is what underlies the folk wisdom in the continuous time 

literature that any difference in volatilities leads to full efficiency. However, this full-

revelation argument requires that the entire path of the diffusion process is observed, and 

in many applications, only the aggregate is available as a public signal. For example, 

firms may have access to one another’s revenues or sales data through annual reports, 

which may possibly disaggregate down to the quarterly level, but firms do not generally 

have access to the individual sales data of their competitors, which are highly proprietary. 

Similarly, government reports many aggregates, ranging from money supply figures, to 

GDP, to hours worked, but the disaggregated data is quite closely held. 



 22 

 

Appendix 1: Proof of Proposition 1 

Proposition 1: The most favorable PPE payoff *v is the largest value v  for which there 

is a function: :w →� �  such that ( , )v w  satisfies the constraints  

(C) 

(1 ) ( ) ( | 1)

(1 )( ) ( ) ( | 1)

( )

v u w z f z dz

v u g w z f z dz

v w z u

= − + +

≥ − + + −

≥ ≥

∫
∫

δ δ

δ δ  

or v u=  if no solution exists.  

This result was asserted but not proved in Fudenberg and Levine [2007a]. It was 

used to prove what is Proposition 2 in this paper, so a proof is needed to support our 

subsequent analysis. The reason a proof is needed is that the conclusion of the theorem 

applies to both pure and mixed equilibria, but only pure actions are considered in the 

program (C). This simplification is possible only because the existence of a public 

randomizing device implies that any payoff ( )w z  between *v  and u  can be attained by 

randomizing between the two equilibria.  

Proof: We need to show that it is sufficient to consider pure actions. Suppose that the 

best PPE for the long run player gives more than the static Nash payoff, and fix an 

equilibrium that attains this payoff. In the first period of this equilibrium, the short-run 

player must play In with positive probability, so the long run player must play +1 with 

positive probability. Fix such an equilibrium, and suppose that the short-run player plays 

Out with positive probability in the first period. Since the short-run player’s actions are 

observed, the strategy profile where LR plays as in the original equilibrium and SR plays 

In with probability 1 in the first period and follows the original strategies thereafter is a 

PPE in which LR has a higher payoff, which shows that SR does not randomize in the 

first period of the best equilibrium. Finally, if the long-run player randomizes in the first 

period, the conditions in (C) apply to every action in the support of the first-period 

distribution, so the maximized value can be attained with a pure strategy. Finally, observe 



 23 

that we require only ( )v w z u≥ ≥  since any payoff in between the best and worst can be 

attained with public randomization.                                                                                   � 

Appendix 2: Binomial Convergence to Diffusions 

Here we prove some results about the convergence of binomials to diffusions needed in 

proving Proposition 4 in Appendix 3.  

Proposition 3: Suppose that the signals are sums of i.i.d. binomials ( )jZ ∆  where the 

common outcomes are ( ) ( )x y∆ > ∆ , and that the probability of ( )x ∆  under action 

1, 1i = + −  is ( )i ∆α  with 0lim ( ) ,0 1i i i∆→ ∆ = < <α α α . If under each action i the 

sums  
 /

1
( )

t

jj
Z

∆

=
∆∑ converge to a diffusion with drift iµ  and volatilities  

2
iσ  as 0∆ → , 

then 1 1+ −=σ σ . 

Proof: First we examine what it means for the sum of the ( )jZ ∆  to converge to a 

diffusion under action +1. It is convenient to replace the parameters ,x y  with the 

parameters 1 1, 0∆ ∆
+ + >µ σ , where  

 

1/2
11/2

1 1
1

1/2
11/2

1 1
1

1 ( )
( )

( )

( )
( )

1 ( )

x

y

+∆ ∆
+ +

+

+∆ ∆
+ +

+

 − ∆ ∆ = ∆ + ∆   ∆ 

 ∆ ∆ = ∆− ∆   − ∆ 

α
µ σ

α

α
µ σ

α

 

With this new parametrization, we can calculate that 1 1( )jE Z ∆
+ +∆ = ∆µ  and 

( )21 1var ( )jZ
∆

+ +∆ = ∆σ . 

If the limit process is a diffusion, then its position at t  has the normal distribution 

with mean 1µ+ , variance 2
1σ + . With the reparameterization, this is equivalent to 

1 1
∆
+ +→µ µ  and 1 1

∆
+ +→σ σ . As an illustration, consider the standard binomial limit 

discussed in section 4: Here we have 1/2
1x y += − = ∆σ , and 

1/2
1 1 1(1 / )/2+ + += + ∆α µ σ , so 1 1

∆
+ +=µ µ  and ( )2 2 2

1 1 1( ) ( ) / 1/∆
+ + +  = − ∆ σ σ µ  

 Now we examine a second sequence of binomial distributions that converges to a 

different diffusion process with mean 1µ−  and variance 2
1σ− .  As we discussed earlier, it 
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is important that this second sequence has the same increments ( ), ( )x y∆ ∆ ; otherwise, a 

single realization could be fully informative. So we now have   

(A1) 

1 11/2 1/2
1 1 1 1

1 1

1 11/2 1/2
1 1 1 1

1 1

1 ( ) 1 ( )
( )

( ) ( )

( ) ( )
( )

1 ( ) 1 ( )

x

y

+ −∆ ∆ ∆ ∆
+ + − −

+ −

+ −∆ ∆ ∆ ∆
+ + − −

+ −

− ∆ − ∆
∆ = ∆+ ∆ = ∆ + ∆

∆ ∆

∆ ∆
∆ = ∆− ∆ = ∆− ∆

− ∆ − ∆

α α
µ σ µ σ

α α

α α
µ σ µ σ

α α

 

We now solve this system to see the possible values of 1 1, ( )∆
− − ∆σ α  as a function 

of 1 1 1 1, , , ( )∆ ∆ ∆
+ + − + ∆σ µ µ α . 

 

( )

( )

1 1
1 1 1 1

1 1

1 1
1 1 1 1

1 1

1 ( ) 1 ( )

( ) ( )

( ) ( )

1 ( ) 1 ( )

α α
µ µ σ σ

α α

α α
µ µ σ σ

α α

+ −∆ ∆ ∆ ∆
+ − + −

+ −

+ −∆ ∆ ∆ ∆
+ − + −

+ −

− ∆ − ∆
− ∆ + =

∆ ∆

∆ ∆
− ∆− = −

− ∆ − ∆

 

 Divide the two equations to eliminate 1σ
∆
− , solve for 1( )α− ∆  and plug back in to the 

second equation to find 

( )
( )

( )

1
1 1 1

1 1
1 1 1 1

1 1
1 1 1

1

( )

1 ( ) 1 ( )

( ) 1 ( )

( )

α
σ µ µ

α α
σ µ µ σ

α α
σ µ µ

α

+∆ ∆ ∆
+ + −

+ +∆ ∆ ∆ ∆
− + − +

+ +∆ ∆ ∆
+ + −

+

∆
− − ∆ − ∆ − ∆= − ∆ +   ∆ − ∆  + − ∆

∆

. 

Since 0lim ( ) ,0 1i i i∆→ ∆ = < <α α α , and it follows that 1 1
∆
− +→σ σ .  � 

Lemma A2.1: Suppose that the signals are sums of i.i.d. binomials ( )jZ ∆  where the 

common outcomes are ( ) ( )x y∆ > ∆ , and that the probability of ( )x ∆  under action 

1, 1i = + −  is ( )i ∆α  with 0lim ( ) ,0 1i i i∆→ ∆ = < <α α α . If under each action i the 

sums   
 /

1
( )

t

jj
Z

∆

=
∆∑ converge to a diffusion with drift iµ  and volatilities  

2
iσ  as 0∆ → , 

then  

 
( ) ( )2 2

1 1
0 1/5

| |
lim 0

∆ ∆
+ −

∆→
−

=
∆

σ σ
. 

Proof:  Since  

 

( ) ( )2 2
1 1 1 1 1 1

1/5 1/5

| | | || |
∆ ∆ ∆ ∆ ∆ ∆
+ − + − + −− − +

=
∆ ∆

σ σ σ σ σ σ
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and 1 1 1| | 2∆ ∆
+ − ++ →σ σ σ , this is the same as 1/5

1 1| | / 0σ σ∆ ∆
+ −− ∆ → , so 

( )
( )

( )

1 1

1/5

1 1/2
1 1 1

1 11/5 3/10 1/5
1 1 1 1

1 1 1/2
1 1 1

1

( )

1 ( ) 1 ( )

( ) 1 ( )

( )

∆ ∆
+ −

+∆ ∆ ∆
+ + −

+ +∆ − ∆ ∆ − ∆
+ + − +

+ +∆ ∆ ∆
+ + −

+

−
=

∆

∆
− − ∆ − ∆ − ∆∆ − − ∆ +∆   ∆ − ∆ 
+ − ∆

∆

σ σ

α
σ µ µ

α α
σ µ µ σ

α α
σ µ µ

α

Algebraic manipulation leads to 

 

1/10
1 1 1 1 1

0 0 11/5
1 1

1 1 1
1 1

1 1 11/10
0

1 1 1

| | | 2 ( ) 1 |
lim lim

1 ( ) 1 ( )
2

( ) ( )

| | | 2 ( ) 1 |
lim

2 (1 ( ))

σ σ µ µ α
σ

α α
α σ σ

α α

µ µ α

σ α α

∆ ∆ ∆ ∆
+ − + − +∆

∆→ ∆→ +
+ +∆ ∆

+ + +
+ +

+ − +
∆→

+ + +

− − ∆ ∆ −
= =

 ∆ − ∆ − ∆    ∆ ∆ 
− ∆ −

∆
− ∆

 

Since 0lim ( ) ,0 1i i iα α α∆→ ∆ = < <  the result follows.   

� 

Using the central limit theorem, the conditions 1 1 1 1,∆ ∆
+ + + +→ →µ µ σ σ  and  

1 1 1( ) , 0 1+ + +∆ → < <α α α  can be shown to be sufficient for a triangular array to 

converge to a diffusion. To construct a non-standard binomial array with the probabilities 

of the two steps not converging to 1/2, it is convenient to set 

1 1 1 1 1 1, , ( )∆ ∆
+ + + + + += = ∆ =µ µ σ σ α α . Using our alternative parametrization from 

above we find for example that if 1 1 10, 1, 1/3+ + += = =µ σ α , we have the binomial 

taking on the values 1/2 1/2( ) 2 , ( ) ( 2 /2)x y∆ = ∆ ∆ = − ∆  with probability of ( )x ∆  

equal to 1/3, which generate a triangular array that converges to a diffusion with drift  0 

and volatility 1. 

Appendix 3: Proof of Proposition 4 

As in the text, we consider a sequence of games with both the event period ∆  and 

the observation period ( )τ ∆  converging to 0, and define ( ) ( )/k τ∆ = ∆ ∆ . Note that 

condition (i) of Proposition 4 requires that 0lim ( )k∆→ ∆ = ∞ ; we will maintain that 

restriction throughout this appendix. We start by summarizing some notation and key 

results from other places. Recall that when players observe the state of a diffusion 
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process at discrete intervals, the signals are normally distributed; let ,φΦ  respectively 

denote the c.d.f. and density of the standard normal distribution.  

Fact 1 [Fudenberg and Levine [2007a] Proposition 2]: Suppose the signals are 

normally distributed with means 1a τ−  and variance 
2σ τ . Then for any 0 0ρ > , 0ρ ρ>  

implies / 0q τ →  and so there is no non-trivial limit equilibrium. 

For a fixed distribution F, let  ( ) log ( )x
F e F dx

∞

−∞
≡ ∫ ζψ ζ  be the logarithm of the 

generating function. We will be interested in the distributions corresponding to the 

binomial distributions referred to in Proposition 4: In this case we have  

 ( )( ) ( )( ) log (1 )x ye e∆ − ∆
∆ ∆ ∆= + −ζ ζψ ζ α α  

Fact 2 [Large Deviations Theorem for Triangular Arrays, from Fudenberg and 

Levine [2007b]] : Suppose that for each n  there is a sequence n
iZ 1, ,j n= …  of . . .i i d  

random variables with zero mean, variance 2
nσ  and distribution nF , and that 

1

n n
n jj
z Z

=
= ∑ has distribution nF ∗ , while the normalized sum /n nz nσ  has 

distribution nF . If 

1. For some 0s >  and all 0 sζ≤ ≤  there is a continuous function 2( ) 0ψ ζ >  and 

constant 0B >  such that 0lim sup ''( ) ( ) 0n s n→∞ ≤ ≤ − →ζ ψ ζ ψ ζ and 

2
0sup | '''( ) |,| ''''( ) || '''''( ) |s n n n Bζ ψ ζ ψ ζ ζ ψ ζ ζ≤ ≤ <  

2. nσ σ→ , 
3

3 3
i

n nM E Z M≡ → < ∞  

3. 1/6 0nn x− →  

4. nx → ∞  

Then 

 
1 ( )

1
1 ( )

n
n

n

F x

x

−
→

−Φ
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 In what follows, we will take the limit on k → ∞  rather than 0∆ → , implicitly 

considering a sequence 0k →τ , with /k k k∆ = τ  and ( )k k
j jZ Z= ∆ .

16
  As in the proof 

of Proposition 3 we define new parameters k k
i i jE Zµ = ,( )2 var /k k k

i i jZσ = ∆ . 

We are interested in applying the Large Deviation Theorem to 
1

ˆ
kk k

jj
z Z

=
≡ ∑ . 

This leads us to define 

  
k k k
j ik

ij k

Z
Z

µ− ∆
=

∆
�  

 

so that 2 20, var ( )k k k
ij ij i iEZ Z σ σ= = →� �  and the values taken on by the reparameterized 

binomial are  

 

1/2

1/2

1 ( )

( )

( )

1 ( )

k
ik k

i i k
i

k
ik k

i i k
i

x

y

 − ∆ =   ∆ 

 ∆ = −   − ∆ 

�

�

α
σ

α

α
σ

α

. 

Note that lim k
k i ix→∞ = σ : the reparameterized binomial has step size tending to a non-

zero constant. 

Lemma A.3.1: Consider two i.i.d. binomials ( )jZ ∆  with common outcomes  

( ) ( )x y∆ > ∆ , where  the probability of ( )x ∆  under action 1, 1i = + −  is ( )i ∆α  with 

0lim ( ) ,0 1i i i∆→ ∆ = < <α α α .  If under each action i the sums of i.i.d binomials  

 /

1
( )

t

jj
Z

∆

=
∆∑ converges to a diffusion with drift iµ  and volatilities  

2
iσ  as 0∆ → , then 

the reparameterized binomials satisfy conditions 1 and 2 of the large deviations theorem 

for both 1, 1i = − + . 

Proof: We consider the case 1i = + , the case 1i = −  is identical save for notation. The 

cumulant generating function for +1 is 

1/2
1 1

1 1
1 1

1 ( ) ( )
( ) log ( )exp (1 ( ))exp

( ) 1 ( )

k k
k k k k

k i ik k
+ +

+ +
+ +

       − ∆ ∆        = ∆ + − ∆ −           ∆ − ∆          

α α
ψ ζ α ζσ α ζσ

α α

 

                                                 
16

 We write k  as a superscript as the subscript denotes the action 1, 1i = + − . 
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Let 
1/2

1 1
1 1

1 1

1ˆ( ) log exp (1 )exp
1i i

+ +
+ +

+ +

       −        = + − −                −     

α α
ψ ζ α ζσ α ζσ

α α
. 

Because 1 1( )k+ +∆ →α α  and k
i iσ σ→ , we know that 

0
ˆlim sup ''( ) "( ) 0k s k→∞ ≤ ≤ − →ζ ψ ζ ψ ζ  so the first part of condition 1 is satisfied, and 

it is clear by inspection that the other necessary conditions hold as well. 

� 

We turn now to the main proof. The idea is to show that if there were strategies that led to 

a non-trivial limit equilibrium in the binomial case, we could construct a non-trivial limit 

equilibrium when players observe the position of a diffusion. There are several details 

that need to be attended to in order for this argument to work. First, the approximating 

normals corresponding to the two different actions will have different variances, while 

Fact 1 supposes that the variances are equal before the limit is reached. Lemma A.2.1 

adds a condition on the rate of convergence that enables us to extend Fact 1 to the case 

where the variances are different before the limit is reached. Moreover, while we know 

that within each period z  is converging to a normal, the cutoff for punishment might be 

going to infinity, so the standard central limit theorem does not apply. Hence we use the 

large deviation theorem described above. The idea is to show that if the cutoff grows 

faster than 1/6k  the probability of punishment is so low that it cannot sustain a non-trivial 

equilibrium, while if it grows at 1/6k  the normal approximation is so good that we can 

make use of Fact 1. 

 First we give a Lemma needed to deal with variances that are unequal before the 

limit is reached. 

Lemma A.3.2:  Suppose nσ σ→ , and that 2 2 2| | 0n n nζ σ σ− →� . Then 

 

1
1

1

n

n

n

n

− −Φ   
→

− −Φ   �

ζ µ

σ

ζ µ

σ

 

proof: Observe from L’Hopital’s rule that if x → ∞  then (1 ( ))/ ( ) 0x xφ−Φ → . Using 

that fact, we may again apply L’Hopital’s rule to see that  

lim (1 ( ))/ ( ) 1x x x x→∞ −Φ =φ .  Define 
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 n
n

n

x
−

=
ζ µ

σ
 and n

n
n

x
−

=
�

�
ζ µ

σ
. 

Then 

 

( )
( )

( )( )
( )

( )( )

( )( )
( )

( )( )

( )
( )

2 2

1
1

lim lim
1

1

1
1

lim
1

1

lim lim exp
2

lim

n

nn
n n

n n

n

n
n

n n
n

n
n

n n

n n

n n n n n
n n

n n n

n

x

x

x
x

x x
x

x
x x

x x

x x

→∞ →∞

→∞

→∞ →∞

− −Φ   −Φ 
=

−  −Φ−Φ   

− Φ
−Φ=

−Φ
−Φ

 − −       −           = =       

=

�

�

�
�

� �

� �

� �

ζ µ

σ

ζ µ

σ

φ

φ

ζ µ ζ µ

φ σ σ σ

φ σ

( )( )22 2

2 2exp 1
2

n n n

n n
→∞

 − −   =   

�

�

σ σ ζ µ

σ σ

 

� 

Lemma A.3.3: When the signal is the sum of binomials with common support, and action 

-1 has a higher mean, the monotone likelihood ratio property is satisfied for the pair of 

signals. 

Proof: This is well known and can be verified by directly calculating the likelihood ratio. 

for the multinomial sum of binomials. � 

Define the random variable normalized for the agent taking action +1 as  

 
11 1

1
11

ˆ
k k

k k k ijjk
kk k

Zz k
z

kk

µ

σσ

=+ +
+

++

− ∆
≡ =

∆

∑ �

�  

Since the MLRP is satisfied, we may assume a strategy of the form “punish” if 

1
k kz ζ+ >� .  

Lemma A.3.4: If 1/6lim inf 0k
k k−→∞ >ζ and 2/7exp( ) 0k k →τ  then / 0p τ → , 

/ 0q τ → . 
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Proof: It suffices to prove / 0q τ →  since q p≥ . To compute q , we need to consider  

the distribution of 1
kz+�  when the action taken is –1. This does not have zero mean or unit 

variance, so we renormalize, defining 1
1 1 1 1

1

( )
k

k k k k k
k

z z k
σ

µ µ
σ

+
− + − +

−
− − ∆� � , which has zero 

mean and unit variance when the action taken is –1. Denote the c.d.f. of this random 

variable when the action is –1 by kG ; we may potentially apply the large deviations 

theorem to this distribution. In the new normalization, the cutoff is   

 1
1 1

1

( )
k

k k k k k
k

x k+
− +

−
= − − ∆
σ
ζ µ µ

σ
 

so that  1 ( )k k kq G x= − . However, since 1/6lim 0kk− >ζ , 1 1| | 0k k
+ −− →σ σ  and k

iµ  

is bounded, we see that 1/6lim 0k
k x k−→∞ > . Hence we set 1/7 2kx k= π , and 

because 1/6 0kk x− → , we know that k kx x≤  for large enough k, and that the 

conditions 3,4 of the large deviations theorem above are satisfied for kx . It follows that 

for k  sufficiently large 2(1 ( ))kq x≤ −Φ . Next use L’Hopital’s rule to see that 

1 ( )
0

( )

k

k

x

x

−Φ
→

φ
 so for large enough k  we have  

 
( )2

3 ( ) 3 exp / 2
2

k
k

x
q x

  ≤ = −    
φ π

π
. 

Since 1/7 2kx k= π , we have that 2/7/ ( exp( )) 0p C k≤ →τ τ   � 

Now we can prove Proposition 4, which we restate for convenience. 

Proposition 4: Suppose  

(i) 2/7
0lim ( )exp( ( ) )k∆→ ∆ ∆ → ∞τ  

(ii) the signals are sums of  i.i.d. binomials ( )jZ ∆  where the common outcomes are 

( ) ( )x y∆ > ∆ , and the probability of ( )x ∆  under action 1, 1i = + −  is ( )i ∆α  with 

0lim ( ) ,0 1i i i∆→ ∆ = < <α α α  

(iii) under each action i, 
 /

1
( )

t

jj
Z

∆

=
∆∑ converges to a non-degenerate diffusion with 

drifts  µi  and volatilities 
2σ i .  
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Then all limit equilibria are trivial. 

Proof: By Lemma A.3.3 the signals satisfy the MLRP, so we can restrict attention to 

strategies that punish when the observed signal exceeds some cutoff. By Lemma A.3.4 if 

there is a non-trivial limit, we may assume that the cutoff satisfies 1/6lim 0k
k kζ −
→∞ = . By 

Lemma A.3.1 and Fact 2, this means that we may compute / , / ,p qτ τ ρ  asymptotically 

using normal distributions. From Lemma A.2.1 

 
( ) ( )2 2

1 1

1/5

| |
lim 0

( / )

k k

k
k

+ −
→∞

−
=

σ σ

τ
, 

so that  ( ) ( )2 21/5
1 1lim | | 0k k

k k→∞ + −− =σ σ . Since 1/6lim 0k
k k−→∞ =ζ , 

1/5lim 0k
k k−→∞ =ζ  and so  ( ) ( )2 2

1 1lim | | 0k k k
k→∞ + −− =ζ σ σ . Consequently 

Lemma A.3.2 applies, so that we may assume that the normals have the same variance, 

implying a non-trivial limit in that case. This contradicts Fact 1. � 

Appendix 4:  Aggregating Two Good- News Signals  

We want to show that aggregating two trinomial good-news signals leads to a 

better limit equilibrium payoff when γ  is very large and the short-run gain to deviating, 

g , is very small. To do this we determine the best limit equilibrium payoff when 

aggregating two signals. 

Punishing when the sum of the signals is -2  and +2 will minimize and not 

maximize the target ratio, and with a 0 mean the signals -1 and +1 are symmetric. Thus it 

will be enough to determine /q p  for the signals 0 and +1. To do this we first calculate q  

and p  for these two signals. Note  that for 1, 1i = −   

 

( )
1,2

2
2 2

Pr ( 0) Pr{(0, 0),( , ),( , )}

1 3 1
2

2 2 2

i jj

i
i i i

Z h h h h
=

= = − − =

−
+ = + −

∑
α

α α α
 

This is minimized at 1/3iα = , where it has value 1/3. Next 

2
1,2

Pr ( 1) (1 )i j i i i ij
Z

=
= = − = −∑ α α α α .  This is maximized at ½. 
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Thus if the strategies punish when the sum is 1, 
2

1 1
2

1 1

/q p B− −

+ +

−
= =

−
α α

α α
, and if 

the strategies punish when the sum is 0  we have 
2
1 1
2
1 1

3 1 2
/

3 1 2
q p A− −

+ +

+ −
= =

+ −
α α

α α
. 

To compare ( )max ,A B  to the likelihood ratio 1

1

C
α

α
−

+
=  for a single 

observation, we first compare B and C:  

 

2
1 1

2
1 1 1

1 1

1

1
1

1

B

C

α α

α α α
α α
α

− −

+ + −
− +
+

−
− −

= = <
−

  

so unsurprisingly (0,1) and (1,0) are less informative than (0).  

Next, we ask when A C< . This is true when  
2
1 1 1
2

11 1

3 1 2

3 1 2

α α α

αα α

− − −

++ +

+ −
<

+ −
. 

Note that 1 1α α− +>  because we are in the good news case. Observing that all the 

expressions are non-negative we can write this as 

22
1 11 1

1 1

3 1 23 1 2 α αα α

α α
+ +− −

− +

+ −+ −
< . The same function  

23 1 2
( )f

α α
α

α

+ −
=  

appears on both the left and right hand side of this inequality. Its derivative is  

2 2

2

6 2 3 1 2
'( )f

− − − +
=
α α α α

α
α

, so '(1) 0f > , and thus when  1 1α α+ −<  and both 

are sufficiently close to 1, we have  1 1( ) ( )f f− +>α α ; since 1 1, 1α α+ − →  as γ → ∞ , 

aggregating two signals together  improves the best likelihood ratio  as γ → ∞ . On the 

other hand, the maximized value of this likelihood decreases to 1 as γ → ∞ .  Thus for 

some payoff functions, the values of  γ  for which aggregating two signals improves the 

likelihood ratio may be so large that even with two signals there is only a trivial limit 

equilibrium. On the other hand, aggregation can allow a switch from non trivial to trivial 

limits if both γ  is very large and g  is very small, so that 
2 2
1 1

2
1

/( )
( 1)

g u u+ −

+

−
= −

−
σ σ

γ σ
, and  
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the one period likelihood ratio is just  on the edge of the region that supports a non trivial 

limit. 

Appendix 5: Proof of Proposition 6 

Proposition 6: In the bad news case ( 1 1/ 1σ σ− + > ) if 0lim ( )/τ∆→ ∆ ∆ = ∞  then 

there is an efficient limit equilibrium. 

 

Proof: Consider the strategy of punishing whenever the absolute value of 

/

1
( )

t
jj

z Z
∆  

=
≡ ∆∑  exceeds a threshold *z or equivalently when the absolute value of  

1/2
1

( )
z

ζ τ
σ τ+

=   

exceeds 
*

*
1/2

1

z
ζ

σ τ+
= . The proof of Proposition 4 of Fudenberg and Levine [2007a] 

shows that when the observed outcomes correspond to observing the limit diffusions, 

specifying a fixed and large value of *ζ  makes ( )p τ  a constant independent of τ and 

0lim ( )/ ( )q p→τ τ τ  as large as we like. Let  * *( ), ( )q pτ τ  denote the values of q   and p 

computed when players observe the position of the limit diffusions and use strategies 

with a fixed normalized cutoff *ζ , and  let ( ) ( )( ), ( )q pτ ττ τ∆ ∆  denote the punishment 

probabilities when the outcomes correspond to observing the sum of / ( )τ τ∆  draws of the 

Z∆  and the same cut-off rule is used. Since we have assumed 0lim ( )/τ∆→ ∆ ∆ = ∞ , 

and the cutoff *ζ  is fixed relative to the standard errors, we can apply the central limit 

theorem to conclude these probability distributions converge to a normal, so we obtain 

the same limit values of ( )/q p pρ = −  along the triangular arrays corresponding to 

( )τ ∆  as we do in the diffusion limit. Consequently, the proof from the earlier paper’s 

Proposition 4 shows that there is an efficient limit equilibrium.               � 
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