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Previous authors have argued that the otimal monetary policy is contractionary. If
buyers value consumption substantially more than sellers, there is some randomness
and informational constraints make asset trading useful, we show that there is an
incentive compatible expansionary policy that dominates all incentive compatible
contractionary policies.  ©1991 Academic Press, Inc.

1. INTRODUCTION

Friedman [5], Bewley [2, 3], and Townsend [21] argue that the optimal
monetary policy is contractionary. We give a simple example showing that
if buyers value consumption more than sellers by a sufficient margin and
there is some randomness in the economy, then there is an expansionary
policy that dominates all contractionary policies. Intuitively, if the lump
sum taxes that are needed to finance a deflation cannot differentiate buyers
and sellers, they will make it difficult for an unlucky buyer (who has little
money) to consume. An expansion, on the other hand, will tend to insure
unlucky buyers.

The goals of this paper are two: to establish the validity of the intuitive
argument, and to explain why lump sum taxes should not differentiate
between buyers and sellers. If they could, there would be no need for
money: the government could carry out intertemporal and interstate trade
directly through taxes. To formalize this idea we give a mechanism
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theoretic rationale for the Townsend/Bewley model, arguing that if buyers
and sellers cannot be identified this both provides a rationale for a
monetary mechanism and forces the conclusion that lump sum taxes cannot
differentiate between buyers and sellers.

To keep the analysis simple, we examine an example in which two types
of infinitely lived agents shift randomly back and forth between being
buyers and sellers. With each agent’s type private information, we consider
mechanisms in which information is carried between periods by the private
holding of divisible tradable assets. If a first best is achievable by such a
mechanism, it is achievable with just one asset, which we interpret as
money. The mechanism itself we interpret as a government policy. We can
then focus on the nature of mechanisms that achieve the first best. A
contractionary policy pays a positive rate of interest on money balances or
contracts the money supply; an expansionary policy taxes money balances
or expands the money supply. We show that if there is some randomness
in the economy, no contractionary policy can ever achieve the first best. On
the other hand, if agents are sufficiently patient and the desire to trade
sufficiently strong, the first best can be achieved by a flat expansion: an
expansion in which the tax on money balances and rate of expansion of the
money supply are constant independent of time, state, and history. Related
results have been shown by Scheinkman and Weiss [19], who show a
one-time increase in the money stock can be welfare improving, and by
Woodford [24], who shows the potentially beneficial redistributive effects
of an expansion in a model of transactions costs.

By focusing on the case where there are two types and two states, the
analysis is simplified because it is possible to implement the first best
with a single asset. With more states and/or types the first best may be
unobtainable by any mechanism, and mechanisms with several assets may
dominate a mechanism with a single asset. To analyze such a world would
require a more difficult second best analysis, and would also have to deal
with some ambiguity about what would constitute an “expansionary” or
“contractionary” policy with more than one asset. Nevertheless, the central
economic theme of this paper that in the presence of incentive constraints,
redistributional effects are ubiquitous remains valid. Moreover, inflation
will transfer wealth from traders who hold large money balances to those
that hold smaller balances. To the extent that this redistribution alleviates
the insurance problem created by incentive constraints, it will tend to
improve welfare.

Our results stand in contrast to Friedman’s [5] theory of the optimal
quantity of money as developed by Bewley [2, 3] and Townsend [21]. A
good summary of this work can be found in Sargent [18]. A similar result
in a different but related model can be found in Taub [20]. They suggest
that in order to increase the real value of the money stock, a contraction
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is desirable. However, when the future is uncertain, private individuals will
optimally plan to run out of money with positive probability, preventing
them from buying when it is socially desirable that they do so. This can be
prevented only by an expansion. Moreover, unlike the Bewley/T ownsend
model, where the first best requires that the marginal utility of buyers and
sellers be equalized, here the first best forces sellers to zero consumption.
This allows the marginal utility of buyers to be strictly higher than that of
sellers. Because of this gap, the wedge between the marginal utility of
buyers and sellers caused by a modest rate of inflation does not reduce
trade. When the first best equalizes the marginal utility of buyers and
sellers, Kehoe, Levine, and Woodford [10] show that there is a tradeoff
between the beneficial redistributional effect of an expansion, and the
reduction in trade due to the increased wedge between the marginal utility
of buyers and sellers.

It is important to emphasize that we do not assume that a monetary
expansion is the only source of government revenue: indeed, we permit
mechanisms in which the entire stock of consumption is controlled by the
government. Without private information, the first best can be achieved
simply by redistributing all consumption to buyers: money and assets are
not required. With private information, the only incentive compatible
redistribution scheme requires some expansion. The key point is that
the same feature of the model that makes money interesting forces an
expansionary policy—it is not true that this redistribution could be
achieved by a mix of deflation and some other policy.

2. THE ENVIRONMENT

There are two types of infinitely lived agent, denoted type | and type 2.
There are a continuum of agents, with each type constituting half the
population. An individual agent’s type is known only to himself.

There are two possible states of the world, denoted state 1 and state 2.
These states follow a Markov chain, with = denoting the probability that
the state changes from 1 to 2 or 2 to 1, and 1 —= denoting the probability
that the state remains the same. The probability = is referred to as the
probability of reversal. The state of the world in period ¢ is denoted n,. The
initial state n, has equal probability of being either state 1, or state 2.

There is a single perishable consumption good x. One unit of this good
is available per capita each period. If x“ denotes the consumption of agent
a at time 1, his preferences have the additively separable form

Ux*)=E Y &' 'u*(x{,n),

t=1
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where 0 <& < 1 is a subjective discount factor common to all types, and E
denotes the initial expectation before 7, is known. The period utility
function u®(x?, 1) is @(x?) if the state #, is the same as agent a’s type, and
u(x?) if not. We always assume:

(A.1) @(x?), u(x?) are bounded, increasing, concave, and con-
tinuously differentiable.

Boundedness is a technical assumption ensuring “continuity at infinity” in
the sense of Fudenberg and Levine [6] that the future does not matter too
much; monotonicity and concavity are standard. Differentiability is
convenient for notational simplicity. One special case of some importance
is the case of a linear environment: for some &, 7, n>0, #(x¢)=1x;, and
u(x?)=nx? for 0< x?<2+e¢. Since when all agents of a given type are
treated equally no agent can consume more than 2, this means that the
utility functions are linear in the relevant range. Notice that since they are
bounded above, i and u cannot be linear globally.

We should emphasize the convention that the total mass of agents in the
economy is 1 :1/2 the population is of type 1 and 1/2 is of type 2. Consequently
social feasibility means that (1/2)x! + (1/2)x2< 1.

As the economy shifts back and forth between states, the two types of
agent shift back and forth between the period utility functions and wu.
When a type has utility # we refer to them as buyers, when the utility is
u, we refer to them as sellers. To justify this terminology, we assume

(A.2) Du(2)> Du(0),

where Dii, Du represent the derivatives of # and u, respectively. This says
that when all of the single good is shared equally among buyers (each
receiving two units, and each seller none) the marginal utility when a buyer
is never-the-less greater than that when a seller.

Because both types are equally likely to begin life as a buyer, there is a
unique ex ante efficient allocation mechanism in which all agents of a given
type are treated equally. We refer to this as the best allocation, and from
(A.2) it consists of dividing all of the single good equally among the buyers,
each receiving two units, and each seller none. Notice that there are many
efficient allocation mechanisms if we do not adapt the ex ante criterion that
utility is evaluated where both types have an equal likelihood of beginning
life as buyer or seller. In effect, having ex ante identical agents is equivalent
to having transferable utility. The adoption of an ex ante criterion, while a
strong assumption, is not an essential limitation of the analysis. In showing
that the best allocation can be implemented, we have shown (obviously)
the possibility of implementing an ex post first best allocation. On the other
hand, as we point out below, the argument that the best allocation cannot
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be implemented by a contractionary policy easily operates to show that no
ex post first best allocation can be implemented by a contraction either.

As we shall show in the next section, the best allocation is not always
incentive compatible. However, using it as a benchmark substantially
simplifies our analysis: it is easier to check whether or not the best allocation
is incentive compatible than it is to calculate the constrained optimum.

3. ASSET TRADING MECHANISMS

In this section we define mechanisms and asset trading mechanisms. We
give necessary and sufficient conditions for the best allocation to be
implementable. We show that trading constrains mechanism design by
replacing nonmarginal decisions with marginal ones. Finally we show that
in our environment only one asset is required. The nature of mechanisms
that implement the best allocation is discussed below.

Our notion of implementability is that of open-loop Nash equilibrium in
an anonymous decentralized game form. Let X be an abstract space of
actions. An open-loop strategy is a sequence of maps o,(7, 7y, .. n,)
mapping an agents type t and the history of states to actions. A game form
is a sequence of maps f,(n, .. ", 0;,..,0,)>0 mapping the history of
states and an agent’s actions to nonnegative consumption levels. Hammond
[8] refers to such a game form, in which an agent’s consumption is inde-
pendent of the play of other agents, as decentralized. The best allocation is
implemented by the mechanism f and strategy o if

fz('h, s Ny 0'1(1.'), oo Gt(t’ N1y e ’1:)) = 2’ =t
=0, n,#7,

so that buyers get two and sellers zero, and such that for all &
[a#(2) +u(0)1/2 (1 - 9)

> E Z 5t_lua(ft(nla ooy r’ts &I(T)’ bad ] &t(ts ’119 ey r’t))s '1()

t=1

so that the utility from the best allocation cannot be improved upon by
playing an alternative strategy &. In other words, there must be an
open-loop Nash equilibrium that yields the best allocation.

This definition of implementability is equivalent to both Nash and
subgame perfect implementability in a general anonymous game. Anonymity
means that no agent can respond to a deviation by a measure zero group
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of agents. Since the response to deviations by more than one agent is
irrelevant to the determination of equilibrium, this implies the relevant
space of strategies are open-loop. Moreover, because each agent is
infinitesimal, an open-loop equilibrium in which no agent reacts to
another’s deviation is also a closed-loop or subgame perfect equilibrium:
failing to respond to deviations is itself an equilibrium. Fudenberg and
Levine [7] prove the converse: if a closed-loop equilibrium fails to be
open-loop, then a switch from one equilibrium to another must be
triggered by the deviation of a single agent, violating anonymity.

Given open-loop strategies and anonymity, decentralization of the game
form merely simplifies notation. Given the equilibrium strategies of all
agents, anonymity implies that any pair of agents playing the same strategy
receives the same allocation. Determination of equilibrium depends only on
what happens to an agent when he changes his individual strategy. The
way in which allocations change when the entire distribution of strategies
change is irrelevant and may be conveniently suppressed by a decentralized
game form. .

An alternative view of this type of mechanism is provided by Roberts
[17]. He points out that we may strengthen the equilibrium concept to
dominant strategies, provided that we require the mechanism yield socially
feasible allocations only in equilibrium. In this context Hammond [8]
shows that with a continuum of agents decentralization does not limit the
allocations that can be achieved.

In general, a game form must keep track of the entire history of play of
all agents. To maintain such records centrally is expensive. Townsend
[21,22] focuses on a spatial interpretation in which the physical
movement of records between locations is costly, and Manuelli and Sargent
[15] show that this interpretation is possible here. However, it is essential
only that the storage of records through time is costly. Either interpretation
leads us to focus on mechanisms in which record keeping is decentralized.
An asset game form consists of a finite number k£ of assets and a sequence
of maps F,(n,, ... n,, M?_,, 6,) € R**! mapping the history of states, and an
agent’s vector of revealed initial asset holdings M?_, € R* and action g, to
pairs (M?, x,), with M7 e R* final asset holdings and x,e R, consumption.
For notational convenience, we let M be the null symbol. In other words,
at time 1 agents are issued consumption and k different kinds of certificates.
In subsequent periods, the mechanism depends on the history of an agent’s
actions only through the certificates he was given at the end of the previous
period. Notice, however, that each period dated certificates are issued:
agents do not have the option of increasing their supply of next period
certificates by saving current certificates. Since certificates are physical
entities, they must be issued and held in nonnegative quantities. We shall
always assume
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(A.3) Free disposal. If 0<y<F,(ny, .. N, M{_,0,), then there
exists o, with y=F,(ny, .. n, M{_,, 0,).

In particular, agents cannot be prevented from discarding certificates; they
must be held voluntarily.

Our first theorem shows that there is no loss in restricting attention to
asset mechanisms. Define the constant

on

O = T o= n)

(3.1)

This is the expected present value of a unit of utility received after the next
reversal.

PROPOSITION 3.1. The best allocation can be implemented by a mechanism
if and only if it can be implemented by a single asset mechanism if and only if

u(2)—u0) .,
m?én . 3.2)

Proof. 1If the best allocation is to be implemented, it is clear from
anonymity that initial buyers and sellers must prefer the plan of receiving 2
when a buyer, 0 when a seller, to misrepresenting as the opposite type and
getting 0 when a buyer and 2 when a seller. We may assume without loss
of generality the initial state is #, = 1. A simple calculation shows that the
expected value to an agent receiving utility u, in state 1 and u, in state 21s

{0/(1—=07)} (uy + 6,u5).

Consequently, it must be that #(2)+0,u(0)>u(0)+0,u(2) for initial
buyers and u(0)+3,.4(2)=>u(2)+4,u(0) for initial sellers. Because
0<d,<1 and by (A.2), the former inequality is true if the latter is; that is,
initial buyers do not wish to misrepresent if initial sellers do not. Rewriting
the constraint for initial sellers yields (3.2).

It remains to construct a single asset mechanism that implements the
best allocation when (3.2) holds. Consider the strategy space in which each
agent may announce either that he is a buyer or a seller. Suppose without
loss of generality n, = 1. Whenever n,=1 agents who announce they are
buyers get 2 units of consumption, sellers get 2 period ¢ certificates.
Whenever n,=2 agents with 2 period ¢—1 certificates get 2 units of
consumption and 2 period ¢ certificates; agents who do not have 2 period
t — 1 certificates get nothing.

Each agent faces four possible states: he holds either 2 certificates or
none; and 7, is either 1 or 2. The only choice is what to do when in state
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1: take 2 units of consumption or 2 certificates. In state 2, noncertificate
holders can get nothing, and free disposability implies certificate holders
should take the full amount offered. With finitely many states and choices,
and discounting, dynamic programming shows an optimum exists and is
stationary. The only stationary plans are to get 2 in state 1, 0 in state 2,
or vice versa. But we showed above that if (3.2) holds, both types prefer to
consume when they are buyers. ||

In general, an asset mechanism can prevent agents from trading assets.
To the extent that the mechanism is nonlinear, agents will have an incentive
trade with each other. Following Townsend [22] and Hammond [8], we
assume that preventing trade is prohibitively expensive. In addition to
assuming that assets are infinitely divisible, two assumptions are involved:

(A4) Ex post trade. For each ¢ and 7, .., 1, there exists a pe R**!
such that if ze R**', p.z=0 and F,(n;,...n,, M{_,,0,)+2z>0 (and in
particular represents a feasible plan) then there exists o, such that

Fr(nl’ v Hys Mpa—la 6;)>F1(’71a s Moo Mra—19 0',)+Z.

In other words, there is a price p such that agents can trade assets and
consumption. Consequently, the mechanism must promise to deliver at
least as much as agents could obtain through trade. A careful discussion of
the way in which side-markets lead to this conclusion can be found in
Hammond [8].

The second assumption concerning tradability is

'(A.5) Ex ante trade. For all ¢, 4y, ..., ,, 6,, 6, and all M7, M%, ieR
such that AM“+ (1 — 2)M% >0, there exists a ¢/ such that

A‘Ft(nla sees ’119 M‘:s 61)+ (1 _;') F!(r’l’ e ’11’ M;I’ O';)
=F,(Ny, N, AMO+ (1= 2)M?, a7).

In other words, the dependence of F, on M? is linear affine. Townsend
[22] discusses this type of assumption at length. It follows from allowing
agents to trade initial assets before turning them in for final assets and
consumption. If the F, schedule is not convex, agents with different asset
holdings will pool them; if it is not concave, agents with the same holdings
will redistribute them unequally. Consequently F, must be both concave
and convex: that is, linear affine. The difference between this assumption
and assumption (A.4) is that the trade in (A.4) involves simultaneous
exchange of equal value; the trade in (A.5) involves trading assets before
the mechanism operates for goods and assets later. One way to discourage
this type of trade is by refusing to honor such contracts. Nevertheless, as
a matter of practice, people will engage in some trade to avoid nonlinear
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tax schemes or price discrimination schemes (which are what (A.5) rules
out), and some costs will be incurred in the process. Assumption (A.5) is
an extreme assumption, but probably no worse than the other extreme
assumption—that no ex ante trade is possible.

Finally we assume

(A.6) Closedness. If y"=F,(n,..n,M{",67) and y"—y,
M — M?, then there is a o,€ X such that

yth(r’ls s Ny M:z’ 0',).

This says that the set of achievable allocations is closed. Since any allocation
that can be supported can still be supported when we take the closure of
the set of achievable allocations, this is a technical assumption. It ensures
that individual optima exist.

When (A.3) to (A.6) are satisfied, we refer to the mechanism as an asset
trading mechanism. The force of this restriction is given by Proposition 3.2.

PROPOSITION 3.2. The following three conditions are equivalent:

(i) the best allocation can be implemented by an asset trading
mechanism

(ii) the best allocation can be implemented by a single asset trading
mechanism

(iii) Di(2)/Du(0)=5".
Proof. Follows from Lemmas 3.3 and 4.3 below. |

Condition (iii) is similar to condition (3.2) in Proposition 3.1, except
that average utility is replaced with marginal utility. When utility is linear,
Proposition 3.2 implies the best allocation can be implemented by an asset
trading mechanism if and only if it can be implemented by some mechanism.
Roughly, trading prevents the mechanism from exploiting the concavity of
utility by forcing nonmarginal decisions.

From Proposition 3.1, we know that (iii) is necessary for implementability
of the best allocation in the linear case. In a nonlinear environment, we
may define a corresponding linear environment in which the utility
functions are linear for 0< x?<2+¢, and the slopes are 7= Du(2) and
n = Du(0). The necessity of (iii) then follows from.

LEMMA 3.3. If an asset trading mechanism implements the best allocation
it does so also in the corresponding linear environment.

Proof. Let F, o be the asset trading game form and strategy implementing
the best allocation, and suppose it does not implement the best allocation
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in the corresponding linear environment. Then there must be a strategy ¢
that does better than ¢. Let %° denote the consumption plan achieved by
playing & using the game form F, and let x“ denote the best allocation.
Recall that U(x?) denotes the expected present value in the original
(nonlinear environment). Let U*(x“) be the expected present value in the
corresponding linear environment. By hypothesis UL (%°) > U*(%°). We will
construct an allocation x¢, achievable by means of strategy 7, such that
U(x?) > U(%*), contradicting the fact that F and o implement x“.

First observe that because of discounting, the plan x%, equal to %7 if
1< T and equal to O if #> T, satisfies U*(x4) > U*(%*) for some sufficiently
large T. Fix such a T. By free disposability there exists a strategy o such
that F yields x2 when o, is played.

Next, suppose 0 < A< 1. Since £* and x7 can be achieved by strategies 6
and o, it follows from (A.3) and (A4) that x7= (1—-A)%°+ Ax% can be
obtained by playing some strategy o;. Since the plans x° and x7 are
uniformly bounded over time and state, Taylor’s theorem applied to u(x7, n,)
implies

U(x%) — U(x%) = AU*(x%) — AUE(Z9) + o(4),

where o(A)/A — 0 as 4 — 0. But then UL(%9) — U*(x4) <0 implies U(x*) —
U(x%) <0 for all A small enogh, the desired contradiction. ||

The sufficiency of a single asset trading mechanism is proven below in
Section 4 as

Lemma 34. If Dii(2)/Du(0) =38, then there is a single asset trading

n 9

mechanism that implements the best allocation.

4. SINGLE ASSET TRADING MECHANISMS

One aspect of both Propositions 3.1 and 3.2 is that they show that no
more than one asset is needed. From consideration of market completeness,
such as those of Arrow [1] or Duffie and Huang [4], we see that no more
assets are needed than states (two). On the other hand, since assets may be
tailored to individuals, we would also expect that no more assets are
needed than people (two). However, we have shown that we can eliminate
one asset: roughly, we can tailor assets to all except one type, and give that
type whatever is left over.

Assets are expensive. They are costly to issue, and verification is required
to avoid forgery. Moreover, the markets in which they are traded are not
costless to operate. Because of these transactions costs, it is desirable for
asset trading mechanisms to use as few assets as possible. For this reason,
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we now focus on the case of a single asset, which we refer to as money.
Throughout the rest of the paper, then, M7 will be a scalar denoting agent
a’s holdings of money at ¢. Our ultimate goal is to partially characterize
single asset trading mechanisms that can support the best allocation. We do
so in terms of whether or not they are contractionary or expansionary—
that is, whether the per capita money supply increases or decreases. Our
goal is to show that no contractionary mechanism can support the best
allocation, but that an expansionary mechanisms sometimes can.

We first characterize single asset trading mechanisms that can implement
the best allocation.

PROPOSITION 4.1. The best allocation can be implemented by a single asset
trading mechanism if and only if there exist nonnegative prices py (15 - M)
21yt 415 m,) and lump sum subsidies L(ny, ..., n,) =0 such that
agent a, when faced with initial asset holdings of M2=0 and the sequence of
budget constraints,

Pat(M1s oo NYME+ D15 o )X <G5 oy )M+ L1015 s 1)
(4.1)

finds it optimal to consume 2 units when a buyer and O when a seller.

Proof. See the Appendix. §

Note that L(n,, .., 11,) is independent of type. In addition, these budget
constraints are exactly those in a Bewley/Townsend style monetary economy
in which the government is restricted to controlling the growth of the
money supply using equal lump sum taxes. Consequently, when the best
allocation is implementable by a single asset trading mechanism, it may be
interpreted as a monetary equilibrium in a Bewley/T ownsend economy.

Incentive compatibility forces the price of goods to be strictly positive, so
we take goods to be numeraire. We can then rewrite (4.1) as

p'mi+xi<p (R Y)mi_+1; (4.2)

where if M, denotes the per capita money stock, m?= M¢/M, is agent a’s
share; where R,=q(1y, s 1)/ Pa(f15 s Me) is the gross nominal interest
paid on initial money holdings; p,= [P (i s N)P(M15 oos n)IM, ., is
the real value of the end of period money stock; ¢, = M,, /M, is the gross
growth rate of the money stock; and 1, = L(y, s 1)/ P15 s 1.) 18 the
real value of the lump sum subsidy (again, independent of type). Note that
with the money stock normalized to one p, is also the goods price of
money. As with goods, since m7 is a per capita measure, and the population
is 1, social feasibility means (1/2)m} +(1/2)m{< 1. .
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To prove that asset trading mechanism of various types exist, we must
give examples of price systems such that the hypotheses of Proposition 4.1
are satisfied. To check for optimality, it is convenient to use first order
conditions. To do so, we must introduce notation to distinguish between
the two states that can occur next period. If y, is a time ¢ realization, let
.41 be the realization at time ¢+ 1 if the state is the same at 7+ 1 as at ¢,
and let 7,,, denote the realization if a reversal occurs.

LEMMA 4.2. Given budget constraints of the form (4.2) it is sufficient for
the best allocation to be optimal that there exist a budget feasible contingent
plan for money holding m?, and nonnegative contingent marginal utilities of
income u® and a constant B so that the first order conditions

ué = Du(2) if a is a buyer at t

= Du(0) if a is seller at t (4.3)
#‘tzpt>5[(1 —1!) Pz+1(Rr+1¢,_+11)N7+1 +Tlﬁ,+1(R,+1$,_+ll)ﬂ,+l]
(=if m¢>0)

and the transversality condition,
usp, <B, (4.4)

are satisfied.

We will not prove this lemma here: proofs may be found in Levine [14]
or Bewley [2], and are a straightforward extension of the results of
Weitzman [23] to the stochastic case. We merely observe that if n(n,, ..., 1)
is the probability of the history 7, ..,7,, then (4.3) are the first order
conditions that follow from forming a Lagrangean by associating the
multipliers 8'n(n,, .., n,)u? with the budget constraint after the history
N, .M, The transversality condition (4.4) requires that the marginal
utility of a share of the money stock must be bounded. We can now
complete the proof of Proposition 3.2 as

Lemma 4.3. If Dia(2)/Du(0)>= 6, ", then there is a single asset trading

n b

mechanism that implements the best allocation.

Proof. Suppose, without loss of generality, that n,=1. At the end of
every period assign type 2’s the entire money stock, so that if a is a type
2 at 1, m?=2. In periods in which type 2’s are buyers, p,=(1—7) 0,/7,
R,¢7'=1/5(1 —n), and /,=0. In periods (including the initial period) in
which type 2’s are sellers, p, =1, R,¢, ' =0, and /,=2. A check shows hat
(4.2) is satisfied. It remains to give marginal utilities of expenditure for
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sellers. When type 2's are sellers, set u?=24, Dii(2). When type I's are
sellers, set p?=Du(0). The transversality condition (4.4) is obviously
satisfied. A calculation shows that if Di(2)/Du(0)=6;", (4.3) is as well
Notice, incidentally, that this is essentially the same mechanism used in the
proof of Proposition 3.1. I

5. EXPANSIONARY AND CONTRACTIONARY POLICY

A given mechanism must be enforced; it is natural to think of the
enforcement agent as the government. The mechanism can be enforced
either through policy—the rate at which the money supply grows; or
through enforcement of private contracts—the enforcement of the payment
of interest. If no interest is paid on money (so R, = 1) a policy is expansionary
if ¢,>1, so that the money supply grows, or contractionary if 9, <1. In
light of the fact that (4.2) implies that agents care only about R,¢, ', this
motivates the following distinction between mechanisms: A mechanism is
expansionary if ¢,R;7'>1 for all times and histories; a mechanism is
contractionary if ¢,R;' <1 for all times and histories.

Our goal is to characterize mechanisms ability to achieve the best
allocation. In the case of contractionary mechanisms:

PROPOSITION 5.1. If 0<m<1, then no contractionary mechanism can
implement the best allocation.

Proof. First we show p,<3Du(2)/(1-6) Du(0)=C almost surely. Let
%2 denote the best allocation. Suppose p, > C for some history &, = (1, ..., n:)
One type of agent holds at least one unit of money per capita, and can
afford the consumption plan %2 equal to £ before ¢ or if 4, does not occur,
and equal to C in period ¢ and zero forever afterwards if h, does occur.
Consider the linear environment defined by #7=Di(2), n=Du(0)
Contingent on h,, £° gives a present value of no more than 277/(1 — &) units
of utility at ¢; while %° gives 37/(1 —9). Since 0<n <1, h, has positive
probability, and U*(%%)> U*(#°). This contradicts Lemma 3.3, showing
p,<C.

Next observe that incentive compatibility implies (4.2) must hold with
exact equality. Aggregating over agents this shows that p,+1=
p,R,¢67'+1, Solving for /, and substituting into the buyer’s budget
constraint (4.2) yields

(mi—1)=R ¢, (mi_,—1)—1/p..
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By hypothesis in a contraction ¢,R;'<1, so R,¢,'>1, and we just
showed —1/p,< —1/C. It follows that if m{_, <1 then

(m{—1)<(mi_,—1)—(1/C),

and in particular m? < 1. Since m? >0, we see that it is impossible for an
agent who has no more than the average money stock at the beginning of
a period to be a buyer more than C consecutive periods. Unfortunately,
since 0 <m< 1, this event occurs with positive probability. This contra-
diction establishes that a contractionary policy is inconsistent with the best
allocation. |} '

The key to this argument is that agents self-insure by holding money, as
in Leland [12]. Consequently, if they have bad luck too many times in a
row, and do not get help from the government they will no longer be able
to buy. This idea can also be found in Leijonhufvud [11], where it is
suggested that the economy will behave “classically” as long as there is
enough liquidity in the system to act as a buffer. It should be noted that
this result does not depend on the rather strong ex ante welfare criterion
we have adopted. Any ex post efficient allocation must require one of the
two traders to purchase a minimum increment to consumption when a
buyer. Since it can be shown that p, must still be bounded above, it follows
that a sufficiently long string of bad luck will still cause this buyer to run
out of money.

A general method of computing equilibria of this type may be found in
Kehoe and Levine [9]. Existence issues are discussed in Levine [13].
Equilibria of this type in a similar model have also been computed by
Scheinkman and Weiss [19], who point out a one time unanticipated
expansion can help when money balances are badly distributed. In this
model, we can prove a much stronger result.

In case ¢,R”' is independent of time and history we refer to a flat
expansion or contraction. Such mechanisms are simpler and less costly to
operate. In particular a flat expansion can be implemented by government
helicopters dropping a fixed percent of the current money supply each
period, and letting private markets take their course. We have the following
strong converse to Propositions 5.1.

PROPOSITION 5.2. Suppose
Dii(2)/Du(0)>2/om + 26", (5.1)

Then the best allocation can be implemented by a flat expansion (of
¢, R7'=3).
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Proof. Let R,¢7'=1/3. In the initial period the goods price of money
p,=1. Adding (4.2) across types shows that /, =1. At the end of every
perlod assign sellers the entire money stock, so that if a is a seller at ¢,
m? =2 (each seller holds twice the average money stock). If at the beginning
of the period buyers hold all the money p, = = 3/4; if at the beginning of
the period sellers hold all the money p, = p = 3/2. In either case aggregating
(4.2) shows )

L=1+(2/3)p.. (5.2)

By Lemma 4.4, it suffices to give marglnal utilities of expenditure u{ satlsfymg
(4.3) and (4.4). For buyers (4.3) gives u®. Set g=[2/0n+4;']" ' Di(2).
For sellers in the initial period, take u$=(3/4)j. In periods in which
buyers initially hold all the money, take sellers marginal utility of
expenditure to be u?=ji, while if sellers initially hold all the money, take
ué=(1/2) . Since u? takes on only the values Di(2), (3/4) i, g, and (1/2) 4,
it clearly satisfies the transversality condition (4.4). A direct calculation
shows that (5.1) implies the first order conditions (4.3). i

Observe, incidently, that the bound in Proposition 4.3 is stronger than
that in Proposition 3.2: We do not attempt to show that the best allocation
can be implemented by a flat expansion whenever it can be implemented by
some asset trading mechanism, nor do we attempt to find the best possible
bound.

APPENDIX

PROPOSITION 4.1. The best allocation can be implemented by a single asset
trading mechanism if and only if there exist nonnegative prices p (1, - 1.),
2.1y ), 415 s n,) and lump sum subsidies L(ny, ..., n,) =0 such that
agent a, when faced with initial asset holdings of M =0 and the sequence of
budget constraints,

PNy s NOMI+p (M1 1) X7
<q(Nyy o nIME_ + L(ny, s M) (4.1)

finds it optimal to consume 2 units when a buyer and 0 when a seller.

Proof. Supposing that the best allocation is in fact optimal for each
agent given M2=0 and the sequence of budget constraints (4.1), we can
design a game form in which each agents strategy ¢ is to announce a
desired ratio of final money to consumption (possibly infinity), and in
which F, assigns the unique pair (M?, x?) consistent with this ratio that
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satisfies (4.1) with exact equality. Together with the strategy of announcing
truthfully, this mechanism clearly implements the best allocation.

Conversely, for a mechanism to implement the best allocation, it is clear
that the plan of consuming 2 when a buyer and 0 when a seller must be
optimal in the set of all consumption plans that can be generated by
playing different strategies. From ex post tradability, (A.3), the set of final
money holdings M“ and consumption x? that are feasible for an agent a
with initial money holdings M?_, have the form

PM(’h, ey ’1:)M7+ px(ﬂb [ad) ’1)x7
smax p(’hs“w "t) Ft(r’ls---a Nes M‘:—laat)a (1)

g eEX

where p=(py, p.) is the nonnegative price vector whose existence is
asserted in (A.3) and the existence of a maximum is assured by (A.5).
Moreover, from ex ante tradability, (A.4), the right hand side of (1) is a
linear affine function of M?_,, and we may write

max P('h, bl ] '11) Ft(rlla soy ’71’ M;I_la O',)

7192

=q('719"°’ 'I:)Mf_l'*'L(’?u-.-, ’7;) (2)

Moreover, by free disposability of assets, g is nonnegative while the fact
that F,(n,, .., 1, 0, ¢,) =0 implies that L(n,, .., n,) =0. Combining (1) and
(2) yields (4.1). 1§
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